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ABSTRACT

This paper proposes EventCJ, a context-oriented program-
ming (COP) language that can modularly control layer acti-
vation based on user-defined events. In addition to defining
context-specific behaviors by using existing COP constructs,
the EventCJ programmer declares events to specify when
and on which instance layer switching should happen, and
layer transition rules to specify which layers should be ac-
tivated/deactivated upon events. These constructs enable
controlling layer activation on a per-instance basis, sepa-
rately from a base program. We also demonstrate an ap-
proach to verify safety properties of layer transitions by us-
ing a model checker. With these advantages, EventCJ en-
ables more modular descriptions of context-aware programs,
especially when layer switching is triggered in many places
of a program, or by activities external to the base program.
We implemented a prototype EventCJ compiler with Eclipse
IDE support.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.3 [Programming Languages|: Language
Constructs and Features

General Terms

Languages

Keywords

Context-oriented programming, Instance-specific layer acti-
vation, Verification

1. INTRODUCTION

Context awareness is a key requirement in many applica-
tion domains such as mobile computing and adaptive user

*This paper is an extended version of a preliminary work-
shop paper [22].
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interfaces. Programs in such a domain have many func-
tions that behave slightly differently depending on the cur-
rent context, including system configuration, user prefer-
ence, course of past operations, and conditions of computing
environment. Context-oriented programming (COP) [20] al-
lows programmers to implement dynamically switching be-
haviors in a modular manner by providing the following lin-
guistic mechanisms, namely, a layer, which is an abstrac-
tion of context-dependent behaviors, a partial method in a
layer that defines a behavior specific to a particular context,
and layer activation that dynamically redirects a method
call to a partial method in an active layer. For example,
a pedestrian navigation system on a mobile device switches
positioning methods, such as GPS, wireless LAN, and RFID
tags, and changes map views depending on the current lo-
cation. In a COP language, methods that control a map
view can be implemented as partial methods in the “indoor”
and “outdoor” contexts, one of which is activated according
to the current location of the device. There are many im-
plementations of COP languages to date [3, 12, 14, 19, 28,
31].

One of the design issues in COP languages is the means
of controlling layer activation, namely, when and which lay-
ers should be activated and deactivated, and at which parts
of program execution that layer activation and deactivation
should take effect. Most existing COP languages provide
block-structured constructs, such as a with statement in
ContextJ [20] and JCop [5], with the assumption that con-
text changes trigger the execution of context-dependent be-
havior. With this assumption, the block-structure syntacti-
cally ensures the deactivation of activated layers when exe-
cution escapes from the block.

Unlike existing COP languages, we aim to support sys-
tems where changes of contexts and executions of context-
dependent behaviors happen at different points in a program
text and/or in different threads of execution. As pointed out
by Appeltauer et al. [4] and Desmet et al. [15], it is not easy
for the block-structured constructs to support this type of
programs. In the above-mentioned pedestrian navigation
system, a change of context (i.e., a change of the device’s
environment) is either notified by a call-back method from
a framework, or detected by a thread that polls the val-
ues of positioning sensors of the device. Such notification
or detection happens concurrently with context-dependent
behaviors, i.e., the execution of a method that displays a
map.

In this paper, we propose a COP language called EventCJ
that can separate the control of layer activation and the exe-



cution of context-dependent behavior, instead of providing a
block-structured layer activation construct. The separation
is achieved and compensated by the following mechanisms
and approaches.

e EventCJ manages active layers based on events that
trigger transition of layers, instead of controlling the
layer activation on the basis of the dynamic scope of
executions. Events are specified using an AspectJ’s
pointcut-like construct. Transitions are specified by a
rule-based sub-language.

e EventCJ manages active layers on a per-instance ba-
sis, instead of on a per-thread basis as other COP lan-
guages do. This is because layer activation in EventCJ
is no longer tightly coupled with the dynamic scope of
execution, which makes per-thread management inap-
propriate.

e We demonstrate an approach to verify safety prop-
erties of layer transitions by using the SPIN model
checker [21]. Although this approach requires man-
ual specification of the base program’s behavior, it
compensates for the loss of disciplined layer activa-
tion enforced by the block-structured layer activation
construct.

Note that the above mechanisms are used merely for control-
ling layer activation. To describe context-dependent behav-
iors, EventCJ uses basically the same syntax and method
dispatching strategy for the layers and the partial methods
as used in ContextJ [20] and JCop [5].

To study EventCJ’s feasibility and applicability to real-
world problems, we implemented a prototype compiler, con-
ducted a preliminary performance evaluation, and carried
out a case study implementing a program editor [4] and a
pedestrian navigation system in EventCJ.

The rest of the paper is organized as follows. Section 2
shows a motivating example of a navigation system run-
ning on a mobile device that demonstrates that the existing
COP features cannot easily support a certain kind of con-
text management. Section 3 presents the design of EventCJ.
We discuss an approach to verify safety properties by using
a model checker in Section 4. Section 5 describes the imple-
mentation of EventCJ with its performance measurements.
Section 6 presents a case study that investigates feasibility
of EventCJ’s language features in practical application pro-
grams. Section 7 discusses related work. Section 8 concludes
the paper.

2. MOTIVATION

2.1 Pedestrian Navigation System

This section describes the development of event-based con-
text transition mechanisms by using a simplified pedestrian
navigation system running on a mobile device. The system
uses either the global positioning system (GPS) or the wire-
less LAN based positioning system to detect the current po-
sition, depending on whether the device is outdoors or inside
a building, respectively, and displays the current position of
the device. The example is developed on top of the Android
SDK', which provides APIs for displaying street maps and
accessing the resources of the mobile device.

"http://developer.android.com/sdk/

il class Navigation extends MapActivity
2 implements Runnable, LocationListener {
3 MapView mapView;

4 MyLocationOverlay overlay;

5 BuildingGuide buildingGuide;

71 void onStatusChanged(...) {...}
s void run() {}

1 void onCreate(Bundle status) {

11 ... overlay.runOnFirstFix(this);

12 }

14 layer GPSNavi{

15 after void onStatusChanged(...) {...}

16 after void run() {

17 Location loc = overlay.getMyLocation();
18 mapView.getController() .animateTo(loc);
1 }

20| }

211 layer WifiNavi{

29) after void onStatusChanged(...) {...}

23 after void run() {

24 Location loc = overlay.getMyLocation();
25 buildingGuide.updateFloorPlan(loc);

2 }

27 }

28 }

Figure 1: Skeleton of pedestrian navigation system
with layers and partial methods.

The implementation of the system has two context-de-
pendent behaviors. First, it displays the current position on
either a street map or a floor map, depending on the device’s
location. Second, when the device is on an airplane, the
system uses neither positioning systems. In the followings,
we discuss only the former context-dependent behavior.

In this paper, we assume for simplicity that the GPS is
available iff the device is outdoors, and that this navigation
system uses the wireless LAN based positioning systems only
when the GPS is not available. In the followings, we call
outdoors as the GPS-specific context, and indoors as the
wireless LAN based positioning system specific context.

With an existing COP language, we can modularize these
context-dependent behaviors by using partial methods and
layers. Figure 1 shows a skeleton of the navigation sys-
tem implementing the former context-dependent behavior
in ContextJ [3]. The instance variables mapView and over-
lay are provided from the Android framework API. They
respectively display a street map by using Google Maps API
internally, and obtain the device’s geographical location by
using either the GPS or the wireless LAN signals. The in-
stance variable buildingGuide is a navigation system’s own
component that displays a floor plan in a building by using
a database stored in the device.

Following the method and instance variable declarations
that are not context-specific, we declare the GPS naviga-
tion specific behaviors in the GPSNavi layer and the wireless
LAN navigation specific behaviors in the WifiNavi layer.
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If the GPSNavi layer is active, a call to the run scrolls the
street map using animation, which is executed on a different
thread, to update its current position when overlay detects
a new position. If the WifiNavi layer is active, a call to
the run updates the floor plan by calling updateFloorPlan
when overlay detects a new position.

2.2 Problem of Controlling Layer Activation

If the application program runs each of behavioral varia-
tion at particular points in the program text, the with state-
ment in ContextJ is useful to activate corresponding layers.
For example, a method that demonstrates the navigation
system in a building can be defined by using the with state-
ment.

void runWifiDemo(Navigation n) {
with (WifiNavi) { while (true) n.run(); }

3}

-

2.2.1 Cases Where with Cannot be Applied

The with statement in ContextJ is, however, not suit-
able to control context-specific behaviors whose layer acti-
vation is triggered by other parts in the program, or by other
threads of execution. For example, in the pedestrian navi-
gation system, activation of the WifiNavi layer may be trig-
gered by the following event handler onStatusChanged that
handles an event detected by a change of the GPS system
status indicating the entrance of a building:

void onStatusChanged(...) {
overlay.onProviderDisabled("gps") ;
wifiManager.setWifiEnabled(true) ;
// WifiNavi shall be active, but...

37}

However, the onStatusChanged method itself does not call
the run method, which should exhibit context-dependent be-
havior. Furthermore, the thread executing this event han-
dler might be different from that executing the run method;
however, ContextJ can activate layers only under a particu-
lar control flow.

2.2.2  Workaround and its Problem

A workaround in ContextJ is to use first-class layers, i.e.,
storing effective layers in a variable, and activating the stored
layers whenever a context-specific behavior is needed. In the
pedestrian navigation system, this can be done by declaring
a global variable currentLayers, letting onStatusChanged
update the variable, and inserting a with statement into all
calls to run as below:

‘with(Navigation.currentLayers){ run(); }

This workaround easily faces with the scattering problem
because we have to update the current layers in many places
in the program text, as well as to wrap all of the invocations
of methods that have context-dependent behavior. Further-
more, the run method can be called from libraries that we
cannot insert such a statement.

A possible solution to the scattering problems is to use
an AspectJ-like pointcut and low-level layer activation/de-
activation primitives (such as the ones provided from the
ContextJ reflection API) to declare a piece of advice that
makes layer switching.

il pointcut WifiEvent(): execution(

4 void Navigation.onStatusChanged);

j after(Navigation n): WifiEvent() && this(n)
4 && if (Layer.isActive(GPSNavi)){

5§ overlay.onProviderDisabled("gps");

¢ Composition.deactivateLayer (GPSNavi);

71 Composition.activeLayer (WifiNavi);

§ n.overlay.onProviderEnabled("network");
n.wifiManager.setWifiEnabled(true);

1 }

Figure 2: A workaround that uses low-level layer
activation primitives in AspectJ advice.

Figure 2 shows the pedestrian navigation example writ-
ten in a hypothetical language in which we can use both
ContextJ’s layer activation primitives and AspectJ’s advice.
The WifiEvent pointcut captures the execution of the on-
StatusChanged method declared in Navigation. The advice
is executed after the onStatusChanged method is executed.
It first checks activation of the GPSNavi layer by using the
isActive method provided by the ContextJ reflection API.
If the layer is active, it turns the GPS receiver off, deacti-
vates the GPSNavi layer, activates the WifiNavi layer, and
then starts the wireless LAN sensor.

However, these imperative primitives for controlling layer
activation make it difficult to reason about safety properties
in terms of active layers, such that theGPSNavi and Wifi-
Navi layers should never be active at the same time. With
a block-structured layer activation construct, it is not dif-
ficult to reason about this property, because the construct
guarantees that the activated layer is inactive after finished
its execution. On the other hand, ensuring this property is
quite difficult for the programs written with the layer acti-
vation primitives.

3. DESIGN OF EVENTCJ

This section proposes a new programming language called
EventCJ that addresses the aforementioned problems. First,
unlike the with statement, EventCJ separates the code for
layer activation management and context-dependent behav-
iors, and provides a way to declaratively specify rules for
switching layers. Second, instead of activating layers in dy-
namic scope of a thread execution, EventCJ activates and
deactivates layers at different points in a program on a per-
instance basis. Third, to compensate for the lack of block
structure, we propose an approach to verify properties of
layer activation by using the SPIN model checker.

EventCJ provides, in addition to the layer declaration
constructs that are borrowed from ContextJ, new language
constructs, namely, event declarations and layer transition
rules. An event declaration defines an event that will trigger
layer transitions. An event is specified by selecting the join
points of the base program. A layer transition rule specifies
target instances whose layer activation will change, applica-
tion conditions of the rule, and layers to be (de-)activated.
Figure 3 illustrates the relationship among a base program,
layer declarations, event declarations and layer transition
rules.
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Figure 3: Relationship among a base program, layer
declarations, event declarations and layer transition
rules.

3.1 Layer Declarations

Syntax of layer declarations in EventCJ is as follows:

LayerDecl ::= 1layer ID { LayerMemDeclx }
LayerMemDecl ::= PartialMethDecl | ActivateBle
PartialMethDecl ::= (before|after)? MethodDecl
ActivateBle ::= (activate|deactivate)

{ BlockStmtx }

Layer declarations in EventCJ have basically the same se-
mantics as the layers in ContextJ. A layer declaration con-
tains a set of partial methods. Similar to ContextJ, a par-
tial method runs before/after the execution of the original
method when it has a before/after modifier, respectively.
If a partial method has no modifier, it (called an around par-
tial method) runs instead of the original method. An around
partial method can execute another around method or the
original method by calling the proceed pseudo method.

The layer declarations in EventCJ differ from those in
ContextJ in the following ways. First, in EventCJ, a layer
can declare the activate/deactivate block that specifies
the statements that should be executed whenever the layer
is activated/deactivated, respectively. For example, the ini-
tialization and termination of the GPS receiver in the pedes-
trian navigation system can be specified by declaring acti-
vate and deactivate blocks in the GPSNavi layer as follows:

class Navigation ... {
MyLOcationOverlay overlay;
layer GPSNavi {
activate {
overlay.onProviderEnabled(...);
overlay.enableMyLocation() ;
}
deactivate {
overlay.onProviderDisabled(...);
overlay.disableMyLocation();
}
... /* other declarations */
}
}

Second, in EventCJ, a layer is not first class. Instead of
supporting first-class layers, EventCJ offers an alternative

mechanism to control layer activation in a more declarative
manner, which is explained in the next section.

3.2 Specifying Layer Transitions

A novel feature of EventCJ is that we can declaratively
specify when layer transition occurs, which layers are ac-
tivated /deactivated at that time, and which instances are
affected by the layer transition. This specification is done
using event declarations and layer transition rules that are
defined separately from the class and layer declarations.

3.2.1 Event Declarations

In EventCJ, an event triggers layer transitions. Syntax of
event declaration is as follows:

EventDecl ::= declare event ID ( ParamlList ) :
Selector (: SendTo)?
Selector ::= Selectorltem (|| SelectorItem)x
Selectorltem ::= (before|after) PointCut
SendTo ::= sendTo ( Ezpr (, Ezpr)x )

A declare event statement consists of three parts. Fol-
lowed by an event name with a formal parameter list, it
declares an event selector and a sendTo clause. An event
selector specifies when this event is triggered, and a sendTo
clause specifies which instances are affected by this event.

An event selector consists of one or more selector items
separated by the logical OR operator ||. A selector item
consists of a modifier and a pointcut. The syntax of a point-
cut is simply a subset of that of AspectJ. We can currently
use the call, execution, set, and get pointcut designators
to specify the kinds of actions that cause the event, target,
this, and args designators to bind values to parameters de-
clared in the formal parameter list, and the if designator to
make the pointcut conditional. Those pointcuts are written
with either before and after modifiers in order to specify
when the event shall be fired before or after the execution
of an action matching the pointcuts. The semantics is also
similar to the pointcuts in AspectJ, except that, in EventCJ,
each selector specifies the point in time [25] during program
execution, in the same way as symbols in tracematch [1].

The sendTo clause takes a comma-separated list of ex-
pressions, each of which is evaluated to an object value.
Those expressions can use the formal parameters of the
event. Thus, in the sendTo clause, we can specify instances
accessible from the execution context of the join-point when
the event is triggered. When an event declaration has no
sendTo clause, the event becomes global. This means that
every instance, including the one that will be created after
the event, is affected by the event. When a layer is controlled
by global events, we call it a global layer.

For example, the following statement declares SwitchDe-
vice, which will be fired just after each call to the onSta-
tusChanged method in the Navigation class. It binds a
receiver object of a call to the onStatusChanged method to
the formal parameter navi by using the target designator,
and sends the event to that instance bound to navi.

1 declare event SwitchDevice(Navigation navi)

:after call(void Navigation.onStatusChanged(..))
&&target (navi)
:sendTo(navi) ;



3.2.2 Layer Transition Rules

A layer transition rule activates and deactivates the layers
of the object that receives the specified event. Its syntax is
as follows:

Transition ::= transition ID : Rules
Rules ::= Rule | Rules | Rule
Rule ::= Condition Operator NewContext
Condition = ID |not ID | *
Operator ::= switchTo | activate
NewContext == 1D | .

After specifying an event name, layer transition is speci-
fied using either the switchTo or activate operators. The
left-hand side of both operators is a condition to apply the
rule. When the positive (i.e., without not) layer is active, or
the negative (i.e., with not) layer is inactive on the object
receiving the specified event, the rule can be applied. The
right-hand side of the operators specifies the layers to be ac-
tivated. The difference between the switchTo and activate
operators is that the former operator deactivates the posi-
tive layers specified on the left-hand side, while the latter
retains them. A layer transition rule can have more than
one operation separated by |. In such a case, the left-most
applicable operation will be executed.

The following lines are an example:

transition GPSEvent:
WifiNavi switchTo GPSNavi |
not OnBoard activate GPSNavi;

-

This transition rule for GPSEvent means “if WifiNavi is
active, deactivate it and activate GPSNavi; otherwise, if On-
Board is not active, activate GPSNavi.”

As indicated by the above syntax, we can use a wild-
card (*) on the left-hand side, which indicates any (possibly
empty) set of active layers. This feature is useful to make an
operation unconditional. For example, the following transi-
tion rule means “deactivate all the active layers and activate
OnBoard.”

‘transition Boarding: * switchTo OnBoard;

Furthermore, we can use a dot (.) on the right-hand side
to represent no active layers. This feature is necessary to
simply deactivate the specified layer. For example, the fol-
lowing transition rule means “if OnBoard is active, deactivate
it.”

‘transition Arriving: OnBoard switchTo .;

Note that we can declare multiple events at the same join
points:

1 event Standby: call(* PowerButton.pressed());
J event Wakeup: call(* PowerButton.pressed());

When multiple events are triggered at the same join point,
and/or when an event is sent to multiple objects, there are
multiple layer transition rules that can possibly be applied.
In this case, all of the applicable rules at that time are ap-
plied. For example, with the following transition rules:

il transition Standby: not LightOn activate LightOn;
transition Wakeup: LightOn switchTo .;

when the first rule is applied, then the precondition of the
second rule eventually holds after the transition. However,

I

=

because the rules are applied just after the events are trig-
gered, in this case only the first rule is executed. The com-
piler should report an error when there are conflicted rules
such as

transition Standby: * activate LightOn;
transition Wakeup: LightOn switchTo .;

In EventCJ, an object can have more than one active layer
at the same time. For example, with the following layer tran-
sition rules, both WifiNavi and Starbucks are active after
occurrences of WifiEvent and EnterSB (but not Reset).

transition WifiEvent: * activate WifiNavi;
transition EnterSB: * activate Starbucks;
transition Reset: * switchTo .;

The activation of a layer that is already active has no effect
on the system (except for the order of active layers). The
activation of a currently active layer (we call it reactivation
of a layer), however, affects the dispatching order of partial
methods. In EventCJ, partial methods in the more recently
(re)activated layer have higher priority. When EnterSB hap-
pens after WifiEvent, a before method in Starbucks runs
before a before method in WifiNavi, and an after method in
WifiNavi runs before an after method in Starbucks. When
WifiEvent is thereafter raised, the order of partial methods
is reversed. This mechanism for controlling multiple active
layers holds regardless to say that events are declared as a
per-instance basis or globally (i.e., whether or not events are
declared with the sendTo clause).

3.3 Pedestrian Navigation System in EventCJ

We demonstrate the usage of EventCJ by rewriting the
pedestrian navigation system in EventCJ.

Similar to the implementation in ContextJ, the EventCJ
implementation represents behavioral variations as layers,
namely, GPSNavi and WifiNavi in Figure 4. These provide
context-dependent behaviors for GPS-based navigation and
wireless LAN based navigation, respectively. Each layer de-
fines a partial method run that updates the display. The
behavior of this method is different in different layers. In
GPSNavi, it scrolls the map to update its current position.
In WifiNavi, it updates the floor plan. The call to run occurs
when overlay detects a new position. Since run is achieved
as a set of partial methods, the caller of run can show a map
or floor plan without concern for which and how positioning
devices should be used in the current environment.

The activate and deactivate blocks are useful for per-
forming the initialization and finalization operations of posi-
tioning devices. Since either the GPS or wireless LAN device
will be turned on and off regardless of the control flow of the
system, we should otherwise write those operations at the
beginning of every method accessing those devices.

Figure 5 shows the event declarations and layer transition
rules for the navigation system?. There are two events that
will switch instance-specific layers, namely, GPSEvent and
WifiEvent, and two events that will switch global layers,
namely, Boarding and Arriving. The former two declara-
tions extract a Navigation instance by using the target
pointcut and specify it in the sendTo clause.

The former two events are generated when a Navigation
(that implements the LocationListener interface declared

2Currently, they are defined in a module called direction.
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class Navigation extends MapActivity
implements Runnable, LocationListener {

MapView mapView;
MyLocationOverlay overlay;
WifiManager wifiManager;
BuildingGuide buildingGuide;
void onStatusChanged(...) {...}
void run() {}
void onCreate(Bundle status) {
. overlay.runOnFirstFix(this); ... }
layer GPSNavi {
activate {
overlay.onProviderEnabled("gps"); }
deactivate {
overlay.onProviderDisabled("gps"); }
after void run() {
Location loc = overlay.getMyLocation();
mapView.getController() .animateTo(loc);
}
}
layer WifiNavi {
activated{
overlay.onProviderEnabled ("network") ;
wifiManager.setWifiEnabled(true); }
deactivate {
overlay.onProviderDisabled("network") ;
wifiManager.setWifiEnabled(false); }
after void run() {
Location loc = overlay.getMyLocation();
buildingGuide.updateFloorPlan(loc);
}
}
}

Figure 4: Layer declarations in EventCJ.

in the Android SDK) instance is notified that the GPS sta-
tus is changed and the onStatusChanged method is called.
The if pointcut makes these events conditional. These con-
ditions ensure that GPSEvent is fired when the GPS system
becomes available, and that WifiEvent is fired when the
GPS system goes out of service. There are also two global
events Boarding and Arriving that are triggered when the
user is boarding and disembarking the plane, respectively.
Each of them is declared as a global event so that it is broad-
casted to the entire system.

Following to the event definitions, a layer transition rule
is defined for each event name. The first two rules for GP-
SEvent and WifiEvent basically specify that the WifiNavi
and GPSNavi layers alternate with each other unless the de-
vice is in the OnBoard state. The remaining two rules specify
that the device should go to the OnBoard state after Board-
ing until Arriving, which effectively prevents the device
from activating the positioning systems while the device is
on an airplane. Note that the last rule merely deactivates
the OnBoard layer upon Arriving, which means that the po-
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direction SwitchPositioningDevice {
declare event GPSEvent(Navigation n, int s)
:after call(void Navigation.onStatusChanged(s))
&&target (n)&&args(s)
&&if (s==LocationProvider.AVAILABLE)
:sendTo(n) ;
declare event WifiEvent(Navigation n, int s)
:after call(void Navigation.onStatusChanged(s))
&&target (n)&&args (s)
&&if (s==LocationProvider.0QUT_OF_SERVICE)
:sendTo(n);
declare event Boarding()
:after call(void *.cabinModeEntered());
declare event Arriving()
:after call(void *.cabinModeExit());

transition GPSEvent:

WifiNavi switchTo GPSNavi |

not OnBoard activate GPSNavi;
transition WifiEvent:

GPSNavi switchTo WifiNavi |

not OnBoard activate WifiNavi;
transition Boarding:

* switchTo OnBoard;
transition Arriving:

OnBoard switchTo .;

Figure 5: Event declarations and layer transition
rules in EventCJ.

sitioning systems are not automatically reactivated in this
specification®.

As a result of the layer transition, a set of active layers
of each instance is changed, and thus, the behavior of it is
changed. Therefore, the result of the run method changes
with respect to the user’s surrounding environment; when it
is used out of doors, the GPSNavi layer is active and the run
method displays a map of the area obtained by the GPS;
when it is used inside a building, it displays a floor map
of the building, because the WifiNavi layer is active; when
the user is boarding the plane, both the GPS receiver and
wireless LAN device are automatically switched off because
both WifiNavi and GPSNavi become inactive.

3.4 Discussion

EventCJ textually and logically separates layer activation
from the base program. By textual separation, we mean
that EventCJ enables us to specify when and what layer ac-
tivation should take place in a separated module, which had
to be achieved by inserting a with block into the base pro-
gram in the existing COP languages. By logical separation,
we mean that EventCJ can activate and deactivate layers
in a per-instance manner, regardless of the control structure
of the base program. This is in contrast with most existing
COP languages, which can only activate or deactivate layers
within dynamic scope of block statements. Logical separa-
tion is suitable to a program that has multiple and/or a

3In the current EventCJ, we have no means of saving and
restoring active layers. Such a feature would be useful, but
it makes verification very difficult.



fragmented thread of control. Multi-threaded programs and
programs written on top of a framework are typical exam-
ples.

One of the drawbacks of textual and logical separation
is its thin connection between layer activation and control
structures in the base program. For example, even if the
programmer wants to activate a layer during the execution of
a method, it is not obvious if the transition rules in EventCJ
realize such activation. In the next section, we will see a
potential approach to alleviating this problem by using a
model-checking technique.

4. VERIFICATION OF LAYER TRANSITIONS

Since layer transition rules form state transition machines,
it is easy to translate the rules into model specification lan-
guages such as Promela [21]. Translated models can be
checked by a model checker so that the models satisfy some
expected properties written as a temporal logic formula by
the programmer.

Here, we will check the following properties in the layer
transition rules for the pedestrian navigation system. First,
the WifiNavi layer, the GPSNavi layer, and the OnBoard layer
never become active in the same time. Second, after the
Boarding event, both GPSNavi and WifiNavi never become
active until the Arriving event.

We check whether the layer transition rules satisfy such
properties when the rules are applied to the base program.
For this purpose, we require a model description of the layer
transition rules and the base program that can be checked by
a model checker and formally-written properties. EventCJ
automates translation from layer transition rules into a pro-
cess in Promela. The model description of the base program
is also given by Promela’s processes. We assume that this
description is given by the programmer as a specification of
the system, which is used for verifying not only the layer
transition rules, but also for verifying the base program it-
self. The properties that the layer transition rules should
satisfy are formally given by linear temporal logic (LTL)
formulae.

The top half of Figure 6 shows the model in Promela trans-
lated from the layer transition rules shown in Figure 5. The
layer transition rules are translated into one process called
Navigation that repeatedly listens to a channel called chan-
nel. Each transition rule corresponds to a message receiving
statement with a pattern specifying the event name (e.g.,
channel ? WifiEvent at line 10 in Figure 6). The transi-
tion rules connected by the “|” operator are translated to an
if statement (e.g., lines 11-19 in Figure 6). There, the left-
hand side of each specification is translated to a guard that
checks the activation of layers (e.g., gps==Active), and the
right-hand side to an atomic action that changes the activa-
tion of layers (e.g., atomic { gps=Inactive; wifi=Active
}). The labels SO through S3 are inserted to specify the
states just after the reception of events.

The bottom half of Figure 6 shows a process Env that rep-
resents the base program and its running environment pro-
vided by the programmer. It is an assumption that guaran-
tees that the events WifiEvent and GPSEvent are triggered
at any time, while the Arriving event never occurs unless
there is one preceding Boarding event, and once the Board-
ing event is triggered, it is not triggered until the succeeding
Arriving event is triggered.

=

mtype = { WifiEvent, GPSEvent, Boarding,
Arriving, Active, Inactive };

chan channel = [0] of { mtype };

mtype wifi = Inactive;

mtype gps = Inactive;

mtype onBoard = Inactive;

o s w N

(e

active proctype Navigation() {

0]

do
1 :: channel ? WifiEvent ->
11 SO0: if
12 :: (gps==Active) ->

atomic { gps=Inactive; wifi=Active }

14 :: (onBoard==Inactive) ->
15 atomic { wifi=Active }
16 fi
17 :: channel 7 GPSEvent ->
18 S1: if
1 i1 (wifi==Active) ->
29 atomic { wifi=Inactive; gps=Active }
21 :: (onBoard==Inactive) ->
29) atomic { gps=Active }
23 fi
24  :: channel ? Boarding ->
25 S2: atomic { wifi=Inactive;
2 gps=Inactive; onBoard=Active }
27 :: channel ? Arriving ->
2§ S3: atomic { onBoard=Inactive }
2 od
30| }
33 active proctype Env() {
33 do
34 :: channel ! WifiEvent
35 :: channel ! GPSEvent
3 :: channel ! Boarding ->
37 do
3§ :: channel ! WifiEvent
39 :: channel ! GPSEvent
4 :: channel ! Arriving -> break
41] od
42 od
ag }

Figure 6: Promela code translated from the layer
transition rules.

After building a model, we write the verification proper-
ties as LTL formulae in SPIN, such as

[1!(inRFNavi && inGPSNavi && inOnBoard)
[1!(afterBoarding V (
(inGPSNavi || inRFNavi) U afterArriving))

-

where [], V, and U denote the temporal operators “globally,”
“release,” and “until,” respectively. The predicates inRFNavi,
inGPSNavi, inOnBoard, afterBoarding, and afterArriving
are defined as below®:

4Qur verification checks properties that all instances should
satisfy. Thus, the formula [1!(inRFNavi && inGPSNavi),
for example, is interpreted as “for all instances i, RFNavi
and GPSNavi never become active at the same time in ¢.”



5 #define

inRFNavi rf==Active

inGPSNavi gps==Active

inOnBoard onBoard==Active
afterBoarding DeviceController@S2
afterArriving DeviceController@S3

1| #define
#define
#define
#define

By running the SPIN model checker, we can confirm that
the translated model satisfies the above properties. Even
though the example is simple, verifying the above properties
is non-trivial. For example, the latter property does not
hold if the specification of the base program is faultily given,
such as “WifiEvent, GPSEvent, Arriving, and Boarding are
triggered at any time,” indicating that this model checking
approach can also detect a fault in the specification.

S. IMPLEMENTATION

We implemented a prototype compiler for EventCJ. It
translates an EventCJ source program into an AspectJ pro-
gram that will be executed with the EventCJ runtime library
for managing active layers®. The compiler is built on top of
the Spoofax/IMP language workbench [24] with the Java-
front [9] and AspectJ-front [8] packages. The size of the
compiler amounts to 1,078 lines of code.

Directions, event declarations, and layer transition rules
are translated into aspects, pointcuts, and pieces of advice,
respectively. Layers are translated into inner classes. Glob-
ally activated layers are managed using a class variable,
while layers activated on an object are managed by itself,
i.e., each EventClJ class is translated into a Java class with
an array that contains active layers.

We chose, as the translation target language, Aspect]
rather than COP languages like ContextJ and JCop. COP
languages would be alternative target languages, because
implementing EventCJ requires both AOP features to gen-
erate events based on the pointcut-like event selectors and
COP features to dispatch layer methods. However, it turned
out that translating into existing COP languages is not triv-
ial because they do not support per-instance layer activation.

Below, we first explain the translation from EventCJ defi-
nitions to AspectJ aspects and Java classes, and then present
the runtime overheads of method dispatching in our imple-
mentation.

5.1 Translation to Aspect]J

The compilation rules are defined mostly modularly for
each EventCJ construct. Directions, event declarations, layer
transition rules, layers, and partial methods are translated
into aspects, named pointcuts, advice declarations, inner
classes, and their instance methods, respectively.

In this section, we explain the rules for event declarations,
layer transition rules, layers, and partial methods.

5.1.1 Event Declarations

Each event declaration is translated into two AspectJ’s
named pointcuts. Given an event declaration:

declare event E(T ZT): s : sendTo(e);
the compiler separates the event selector s into two groups
of selector items, namely, those prefixed by the before mod-
ifier s, and after modifier s,. The compiler then generates
a named pointcut E, (T ) (respectively, E, (T Z)) whose
body is sp (respectively, sq).

®Tt is available from our project page at http://www.graco.
c.u-tokyo.ac.jp/ppp/projects/event-based-cop.
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For example, the following event declaration (which is al-
ready shown in Figure 5):

declare event GPSEvent(Navigation n, int s)
:after call(void Navigation.onStatusChanged(s))
&&target (n)&&args(s)
&&if (s==LocationProvider.AVAILABLE)
:sendTo(n) ;

is translated into the following pointcut:

pointcut GPSEvent_A(Navigation n, int s):
call(void Navigation.onStatusChanged(s))
&& target(n) && args(s)

&% if (s == LocationProvider.AVAILABLE);

Note that the compiler generates merely one named point-
cut because the event declaration merely contains an after
call selector, but no before selector.

The sendTo clause is simply ignored, because it does not
specify any action, but rather specifies on what objects lay-
ers are changed. It is dealt with when the compiler generates
an advice body that implements the layer transition rules,
as is explained later.

5.1.2  Layer Transition Rules

Each layer transition rule is translated into one or two
pieces of advice. Given a layer transition rule:

transition F:t;
the compiler generates before and after advice declarations
with the named pointcuts Fj (T ) and E,(T ©), respec-
tively, which are generated from the event declaration of E.
Below, we use FE as the name of the event and the event
declaration that defines it. The body of advice implements
the layer transition ¢. If the event declaration E contains
sendTo (e), it changes the set of active layers on each object
obtained by evaluating €. Otherwise, it changes the set of
active layers on every live object.

Consider a concrete example. As we have already shown
in Figure 5, we have a layer transition rule in response to a
GPSEvent event:

transition GPSEvent:
WifiNavi switchTo GPSNavi |
not OnBoard activate GPSNavi;

The compiler translates it into a piece of after advice:

after(Navigation n,int s): GPSEvent_A(n, s){
LayerManager lm=n.lm;
if (Im.isActive(WifiNavi.ID))
1m.deactivate (WifiNavi.ID) .activate (GPSNavi.ID);
else if(!1m.isActive(OnBoard.ID))
1m.activate (GPSNavi.ID);
}

The named pointcut GPSEvent_A(n,s) is shown above. Line
2 gets the layer manager of the Navigation object n by ac-
cessing its instance field 1m, which is added to the Naviga-
tion class by the compiler. The receiver object n at line 2
comes from the expression specified in the sendTo clause of
the GPSEvent definition. Lines 3-4 and 5-6 implement the
rule WifiNavi switchTo GPSNavi and not OnBoard acti-
vate GPSNavi, respectively.

When the specified event is global, the global layer man-
ager Global is used to get the layer managers of all of the
live objects. For example, the layer transition rule for the
event Boarding in Figure 5:
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Figure 7: Execution times of a method call in

EventCJ and Java (shorter is better).

declare event Boarding()
:after call(void *.cabinModeEntered());

3 transition Boarding:

* switchTo OnBoard;
is translated into the following after advice:

pointcut Boarding AQ):
call(void *.cabinModeEntered());
after(): Boarding AQ){
for (WeakReference<LayerManager> wlm:
Global.layerManagers){
LayerManager lm=wlm.get();
if (Im!=null)
Im.deactivateAll () .activate(OnBoard.ID);
}
}

Deactivating all active layers and activating the layer On-
Board are both performed by the layer manager of each ob-
ject.

5.1.3 Classes with Layers

We employ basically the same implementation strategy
as ContextJ for layers and partial methods, i.e., layers and
partial methods are translated into Java classes and meth-
ods. The differences are that each translated class has an
instance of LayerManager to realize the per-instance layer
management, and each layer is translated into an inner class.

5.2 Preliminary Performance Measurement

This section evaluates performance of method dispatch-
ing in EventCJ by comparing the times for calling methods
in EventCJ with and without active layers against the ones
for calling plain Java methods. We used a modified version
of JGFMethodBench in the Java Grande Forum Benchmark
Suite [10] for the measurement. We extended each target
method in the program with empty before, after and pro-
ceeding around partial methods. All executions are on an
Oracle Java HotSpot client VM 1.6.0_22 on four 3.06 GHz
32-bit CPUs running Linux kernel version 2.4.9. In each run,
the time is measured after running a measurement method
once so as to let the JVM perform optimizations.

Figure 7 summarizes method dispatching performance in
Java and EventCJ without active layers. The benchmark

o
I
=3

—

o

S
L

®
=3
L

60 -

40+

204

Exec. time of a method call (nsec.)

number of layers

Figure 8: Execution times of a method call in
EventCJ when increasing the number of active lay-
ers.

program measures execution times of eight kinds method
calls. “Same” and “other” mean that the caller and callee
methods belong to the same and other instance/class, re-
spectively. “Instance” and “class” mean that the method is
an instance and class method, respectively. “Synchronized”
and “ofAbstract” mean the method is either synchronized
or abstract, respectively. In the EventCJ version, we de-
fined a layer with a partial method for the “instance” meth-
ods, which is inactive during the measurements. The “class”
methods in EventCJ has no partial methods.

As the figure shows, calls to the “instance” methods in
EventCJ are approximately 5 times slower than a call to
a plain Java instance method, which can be considered as
the overheads of checking active layers. On the other hand,
the methods without partial method definitions (the “class”
methods) have no overheads relative to Java. Even though
the differences in execution environment prevent direct com-
parison to other COP languages, these overheads factors rel-
ative plain Java are similar to the ones in ContextJ [3].

We also measured method dispatching performance in E-
ventCJ with 1 to 15 active layers. In this measurement, we
define 15 layers, each of which has an empty partial method
for the “same:instance” method. Those layers are activated
before starting benchmark iterations.

Figure 8 shows the result. As we can see, each additional
active layer adds roughly constant time to a call. Again, the
result exhibits a similar trend to the one of ContextJ [3].

6. CASE STUDY

In order to assess usefulness of language mechanisms in
EventCJ, we carried out a case study that implement two
practical application programs in EventCJ. The first pro-
gram is the Pedestrian Navigation System that we already
discussed in the previous sections. The second one is CJEdit,
a programming editor originally written in ContextJ [4].

We examine those application programs to assess (1) what
layer (de-)activating operations can only be realized by using
EventCJ’s mechanisms, and (2) at which program point we
need switch layers. Before answering those questions, we
first overview CJEdit and its implementations in ContextJ
and EventClJ.

6.1 CJEdit Program Editor

CJEdit [4] is a program editor built on top of the Qt/Qt-
Jambi framework. It supports two kinds of text fragments,
namely, code fragments that are displayed with syntax high-



lighting and comments that are displayed in the rich text
format.

Depending on whether the cursor is on a code fragment
or on a comment, CJEdit displays different widgets and ren-
ders a program text in different ways as summarized in Ta-
ble 1. The widgets include an outline view of the program
structure, and buttons for changing text properties. Code
fragments and comments are rendered normally, with syntax
highlighting, and in the grey color.

CJEdit implementations in ContextJ and EventCJ ba-
sically declare the same sets of layers for realizing those
context-dependent behaviors, as indicated in the typewriter
fonts in Table 1. We need to declare two pairs of layers.
The CodeEditing and TextEditing layers reflect whether
the cursor is on a code fragment or a comment. The Active-
Highlighting and InactiveHighlighting reflect a kind of
text fragments being rendered.

6.2 Usefulness of EventCJ Constructs

6.2.1 Layer Activation in CJEdit

While the ContextJ and EventCJ implementations basi-
cally share the same layer structures, they realize layer ac-
tivation in different ways.

Switching between the TextEditing and CodeEditing lay-
ers caused by cursor movement to a different kind of text
fragment. Since the GUI framework notifies the application
program of the cursor movement by invoking a call-back
method, it is not possible to activate layers by using the
with block (without first class layers). The ContextJ imple-
mentation therefore uses the workaround, which keeps active
layers in a global variable, and wrap all relevant method calls
with the with block. The EventCJ implementation, on the
other hand, simply triggers active layers when the call-back
method is invoked.

Selection between the ActiveHighlighting and Inactive-
Highlighting layers depends on the kind of text fragment
to be rendered and the cursor position. Since it depends on
a runtime value (i.e., the kind of text fragment), both of the
ContextJ and EventCJ implementations essentially use the
same strategy for the selection. In the EventCJ implemen-
tation, however, the layer activation code is separated from
the base program, while the ContextJ implementation has
to insert with blocks into the base code.

6.2.2 Use of EventCJ constructs

Finally, we summarize the number of EventCJ constructs
used in the two application programs in order to illustrate
complexity of context-dependent behaviors. The top-half of

Table 1: Context-dependent behaviors and corre-
sponding layers in CJEdit.

cursor position
code fragment comment
widgets outline view text property
code frag- || syntax highlighting | plain
ment (ActiveHighlighting)
comment grey color (Inactive- | plain (RTF)
Highlighting)

active layer || CodeEditing | TextEditing

Table 2: Numbers of EventCJ constructs used in
context-dependent application programs.
counted constructs PNS CJEdit

# layers 3 4

# partial methods 3 10
# transition rules 4 5
# event declarations 4 5
# layer updates 3 0
# with blocks 1 3

Table 2 shows the number of EventCJ constructs used in the
pedestrian navigation system (PNS) and CJEdit.

The bottom-half of the table shows effects of workarounds
that would be needed to implement those applications in
other COP languages. Each workaround requires to manu-
ally manage or compute “active” layers and to activate them
whenever context-dependent behavior is to be executed. We
therefore assumed (potential) implementations of those ap-
plication programs in ContextJ, and counted the number
of operations that updates “active” layers in a global vari-
able (which shall be zero if the layers can be computed from
other global state) as number of layer updates, and counted
the number of with blocks inserted in order to actually ac-
tivate those layers.

Although the number and scale of the application pro-
grams are not large, we can observe that EventCJ constructs
are useful to separately manage layer activation, which oth-
erwise require workarounds in existing COP languages. We
hope that future study will demonstrate that EventCJ gives
positive impact on software maintenance processes.

7. RELATED WORK

7.1 Context-Oriented Programming

Most of the existing COP languages are based on a dy-
namically scoped layer activation mechanism. Since we al-
ready discussed ContextJ in detail in Section 2, here we
compare other COP languages with EventCJ.

JCop [5] is a successor to ContextJ that can declara-
tively specify layer activation by using an AspectJ-like point-
cut syntax. Although JCop is developed independently of
EventCJ, both share the same motivation to separate layer
activation descriptions from the base programs. In fact,
JCop enables one to describe event specific layer activa-
tion from the base program. However, JCop’s layer acti-
vation is still dynamically-scoped; that is, a layer activated
upon a method call can only be deactivated at the end of
the call. Therefore, controlling layer activation beyond the
dynamic scope of method calls requires a reflection-based
workaround, which would make it very difficult to validate
safety properties.

Significant implementation efforts on COP languages have
been devoted for dynamically typed languages such as Lisp
[12], Smalltalk [19], Python [31], and a prototype-based lan-
guage model named AmOS, whose detailed comparison can
be found in other literature [2]. All these COP languages
support synchronized layer activation (i.e., the semantics
provided by the with-block), while EventCJ supports layer
activation triggered by asynchronous events.

Asynchronous layer activation is also supported by Con-



textErlang [18, 17], which is a context-oriented extension to
Erlang that supports asynchronous context activation. In
ContextErlang, context activation is modeled as a message
sent from a supervisor process called context manager; thus,
asynchronous context activation is naturally represented. As
in EventCJ, the message can be broadcasted, or sent to the
processes run on a specified node. Unlike EventCJ, Con-
textErlang activates and deactivates contexts by executing
imperative operations tangled in the base program.

There are extensions to COP languages that can coordi-
nate layer activation based on their dependency and exclu-
siveness among layers [11, 13]. Though those extensions aim
at ensuring similar kind of safety properties, the approaches
are totally different. First, those extensions are based on
dynamically scoped layer activation mechanisms (i.e., the
with-block). Second, those extensions provide runtime co-
ordination mechanisms, which can merely stop a program
at runtime when conflicting set of layers are to be activated.
EventCJ does not provide an explicit means of describing
dependency and exclusiveness. Instead, we propose an ap-
proach to verify safety properties before executing a program
by using a model checker.

From the view point of layer activation per-instance, Ep-
silonJ [29, 30] provides a similar mechanism, which is called
object adaptation, that changes object’s behaviors dynam-
ically. Since EpsilonJ only provides the imperative bind
operation for object adaptation, it is very difficult to per-
form verification as presented in this paper. NextEJ [23] is a
variant of EpsilonJ that supports scoped object adaptation
by using the with-block. Unlike ContextJ, the with-block
in NextEJ can specify the instances that are affected by
the object adaptation within a specific control flow. Thus,
unlike EventCJ, NextEJ cannot control object adaptation
asynchronously triggered by events.

7.2 Aspect-Oriented Programming

EventClJ is related to AOP languages in two ways. First,
EventCJ’s event selectors are based on the pointcut language
and its join-point model in AOP (AspectJ, in particular).
Second, AOP languages that can dynamically deploy aspects
can implement many features that EventCJ provides.

We already discussed AspectJ in Section 2. We now pro-
vide two more detailed differences between AspectJ’s point-
cuts and EventCJ’s event selectors. First, event selectors
in EventCJ are based on the point-in-time join-point model
[25], while pointcuts in Aspect] are based on the region-in-
time model. Second, an AspectJ pointcut specifies when a
piece of advice run. This means that the advice in AspectJ
directly affects the behavior of the join point that matches
the pointcut. On the other hand, an event in EventCJ in-
directly affects behavior by changing the layer activation of
certain objects.

Trace-based extensions to AOP [1, 32] have interesting
similarities with EventCJ. First, those extensions also em-
ploy the point-in-time join point model to recognize the
trace of join points. Second, those trace-based extensions
are based on regular expressions, which can recognize the
same class of languages that finite state machines can do in
EventCJ. However, those trace-based extensions are merely
interested in accepted states because they describe a condi-
tion of advice execution, while each state (i.e., active layers)
is meaningful in EventCJ.

CaesarJ [6] supports dynamic aspect control to deploy as-

pects globally, locally, and thread-locally as well as stati-
cally. Using these constructs, we can encode context-specific
behaviors that are dynamically deployed and undeployed so
that the behavior of the system can change with respect to
the surrounding context. However, operations to dynami-
cally control aspects are imperative in CaesarJ. On the other
hand, EventCJ focuses on the declarative specification on
when each layer transition occurs, which instance is affected
by that layer transition, and which layer becomes active and
inactive at the time of layer transition.

CSLogicAJ [28] is a language that supports adaptation of
service behavior by using context-sensitive service aspects.
It is based on the aspect-oriented language LogicAJ [27].
Similar to EventCJ, context change in CSLogicAJ is mod-
eled in terms of join points. The current implementation of
CSLogicAlJ is limited to systems on the OSGi framework,
and can merely adapt services available in a local OSGi reg-
istry.

7.3 Event-based Programming

The notion of events in EventCJ originates from event-
based programming, which advocates programs that mainly
react to asynchronous events.

Polyphonic Cf [7], which is now a part of Cw, is an exten-
sion to Cf that supports asynchronous methods. EventJava
[16] is an extension of Java that integrates events with meth-
ods. In both languages, events are triggered by method calls
imperatively. In EventCJ, on the other hand, the time when
an event is triggered is declaratively given by selecting join
points. Like EventJava, EventCJ supports the broadcasting
of events as well as unicasting, but EventCJ also supports
the multicasting of events by specifying multiple instances
in the sendTo clause.

ECaesarJ [26] is an extension to CaesarJ with explicit
events and their handlers. Events in ECaesarJ are similar
to those of EventCJ in that they declaratively define when
the event is triggered. ECaesarJ can simulate event-driven
layer transitions by letting event handlers imperatively de-
ploy and undeploy aspects that define context-specific be-
haviors. In this sense, ECaesarJ is similar to the AspectJ-
based approach explained in Section 2.

8. CONCLUSION

The event-based layer transition mechanism in EventCJ
makes it possible to declaratively specify layer activation
apart from the base program. By declaring events in a
pointcut-like language, we can flexibly specify when layer
transitions should occur in a separate manner. Per-instance
based layer activation can affect behaviors of methods exe-
cuted by different threads in a finer-grain. These features
contribute better modularity to context-aware programs whose
context changes occur upon internal or external events. Fur-
thermore, we demonstrated an approach to verify basic prop-
erties of layer transition rules, which first translates those
rules to Promela’s process definitions, describes the base
program’s model in Promela, writes verification properties
in linear temporal logic, and finally executes the SPIN model
checker. We implemented a prototype compiler of EventCJ,
which demonstrated reasonable performance when compared
with other Java-based context-oriented programming lan-
guages.
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