
Designing Event-based Context Transition in
Context-oriented Programming

Tetsuo Kamina
University of Tokyo

kamina@acm.org

Tomoyuki Aotani
Japan Advanced Institute of

Science and Technology
aotani@jaist.ac.jp

Hidehiko Masuhara
University of Tokyo

masuhara@acm.org

ABSTRACT
This paper proposes a new programming language EventCJ.
Its design stems from our observation that, in many context-
aware applications, context changes are triggered by exter-
nal events. Thus, in addition to the current COP language
mechanisms, namely the one to activate/deactivate layers in
accordance with a flow of control in programs, and the one
to dispatch method calls to partial methods on active lay-
ers, we propose a mechanism to declaratively switch contexts
of the receiver of events. EventCJ can declare events that
trigger context transitions, and context transition rules that
define how each instance’s context changes when it receives
a specific event. After the transition, the instance acquires
the context dependent behaviors provided by the activated
context. Each event is declared in an AspectJ-like point-
cut that specifies where the event is fired in the join points
of the system. EventCJ separates the specification of when
each context is activated and deactivated that may crosscut
whole program in the existing COP languages. Further-
more, the declarative nature of the context transition rules
help validation of some properties that the contexts should
satisfy.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Languages

Keywords
ContextJ, Context translation rules, EventCJ

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP’10, June 22, 2010, Maribor, Slovenia
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Context awareness, which is a capability to behave with
respect to its surrounding context, is becoming a major con-
cern in many application areas such as ubiquitous comput-
ing, adaptive user interfaces, and business applications. In
such applications, a behavior of the system may change with
respect to its surrounding context. Thus, identification and
a dynamic composition mechanism of contexts are the fun-
damental requirements to develop such applications. More-
over, such dynamic composition increases the complexity of
software, thus it is desirable to implement the variation of
behaviors in a modular way, and composition of such varia-
tions should be explicitly controlled to make it easy to reason
about some required properties.

Context-oriented programming (COP) [6, 8, 9] has been
proposed to modularly implement context-aware applica-
tions. In COP, context dependent behavioral variations can
be modularized as layers of partial methods, and these vari-
ations can be dynamically activated and deactivated at run-
time. Existing COP languages have two linguistic mecha-
nisms, namely a mechanism to activate/deactivate layers,
and a mechanism to dispatch method calls to partial meth-
ods on active layers. However, in many COP languages, it is
still not easy to specify when a context should be activated
or deactivated.

As Appeltauer et al.[3] pointed out, some context activa-
tions/deactivations occur upon external events. However,
most current COP languages control context activation by
using block statements. Although block statements are con-
venient to represent when a context in the problem domain is
active during particular method calls in the implementation,
they are not suitable to implement context activations that
are triggered by events (such as entering a building from out
of doors, or moving a cursor from a GUI component to an-
other), which can occur at any time during the execution of
a program. Therefore, in such languages, programmers have
to declare an event handler for each event and write context
activation code that may crosscut whole the program. Fur-
thermore, since a context activation is specified by a block
statement, its effect cannot extend into the caller. Thus, af-
ter returning from the event handler, the activated context
is deactivated and the programmers have to write a boil-
erplate code that remembers the current activated contexts
and activates them again when they are required.

One of the possible solutions to address this problem is to
exploit advice mechanism in aspect-oriented programming
(AOP) [12] for localizing code that globally activates and
deactivates contexts. For example, we can use the AspectJ-
like pointcut and advice to specify where context activation

is performed [13]. Within an advice, we can provide im-
perative statements that activate contexts. However, such
imperative statements make it very difficult to reason about
properties like “the context L will not be activated during
the method m is executed.”

All in all, in current COP languages, context activation is
controlled per thread and scoped to the dynamic extent of a
block of statements. However, to reactively switch contexts
by external events, we require an additional mechanism to
declaratively specify how the receiver of events react to those
events, namely rules for context activation/deactivation and
routines associated with events.

We propose a new programming language EventCJ that
allows programmers to control contexts per instance by declar-
ing events and context transition rules: an event triggers
context transitions and a context transition rule defines how
contexts of each object are changed in responce to events.
Each event is specified by using a pointcut-like language in
AspectJ. Context transition rules separate the specification
on context transitions from the program. Furthermore, they
help validation of some properties that the contexts should
satisfy.

This paper only shows our ideas and preliminary design
of EventCJ. It also shows a case study of a banking account
application and provides a comparison among other related
work and future direction of our research.

2. MOTIVATION

2.1 A Simple Example
This section describes our motivation of developing a new

programming language that supports event-based context
transitions by using a simple example. This example fea-
tures a pedestrian navigation system that behaves differently
with respect to its surrounding environment. If it is used out
of doors, it provides a GPS based navigation for the user.
If it is used inside a building, it receives signals from ac-
tive RFIDs to identify the location within the building. To
save energy, the RFID reader is automatically switched off
outside the building, and the GPS receiver is automatically
switched off inside the building.

By using COP languages, we can modularize the context-
dependent behavioral variations. Figure 1 shows a piece
of pedestrian navigation system written in ContextJ [2], a
COP language based on Java. We declare GPS navigation
specific behaviors within a layer GPSNavi, and RF naviga-
tion specific behaviors within a layer RFNavi (throughout
this paper, we use the words “layer” and “context” inter-
changeably). For example, in Figure 1, the DeviceCon-

troller class declares three methods, namely powerOffDe-

vices(), startDevices(), and currentStatus(), and the
layers GPSNavi and RFNavi declare partial methods that pro-
vide behavioral variations for these methods. Examples of
such behavioral variations are as follows: when the layer GP-
SNavi is activated, the startDevices() method starts the
GPS receiver, or when the layer RFNavi is activated, the
powerOffDevices() method turns the RFID reader off, and
so on.

In ContextJ, the context-dependent behaviors can dynam-
ically be composed with the base program by using the with
statement. For example, when we receive an RF event that
indicates that we enter the building, the following event han-
dler may be invoked:

1 class DeviceController{

2 void powerOffDevices(){...}

3 void startDevices(){...}

4 void currentStatus(){...}

5 layer GPSNavi{

6 after void powerOffDevices(){...}

7 after void startDevices(){...}

8 after void currentStatus(){...}

9 }

10 layer RFNavi{

11 after void powerOffDevices(){...}

12 after void startDevices(){...}

13 after void currentStatus(){...}

14 }

15 }

Figure 1: Example of context dependent behaviors
in ContextJ

1 void onBuildingEntered(RFEvent e){

2 with(GPSNavi){ powerOffDevices(); }

3 with(RFNavi){ startDevices(); }

4 }

This event handler firstly turns the GPS receiver off (be-
cause the powerOffDevices() method is called within the
GPSNavi layer), then starts the RF reader (because the start-
Devices() method is called within the layer RFNavi).

2.2 A Problem
The with statement of ContextJ is convenient to explicitly

activate each layer within a specific control flow. However,
it is not suitable to implement context transitions that are
triggered by external events, which may occur at any time.
Therefore, in the above example, the with statement has to
always be used within event handlers that capture the rele-
vant events. When the event handler returns, the activated
layer is also deactivated, because the execution proceeds out-
side the with statement. Therefore, there are no ways to get
the layer specific currentStatus() after returning from the
event handler, unless we provide a wrapper method that is
used to inspect the current machine’s status:

1 void wrapCurrentStatus() {

2 with(lastLayer()){ currentStatus(); }

3 }

This method firstly retrieves the layer that was active last
time, then activates it by using the with statement and calls
the layer specific currentStatus() method. In this case,
we have to provide another boilerplate code; we have to
remember the layer that was active last time and retrieve it
by using the auxiliary lastLayer() method.

The source of this problem is, in ContextJ, layer activation
triggered by events cannot directly be captured by using the
with statement and thus we have to use it within the event
handlers on a case-by-case basis, and there are no ways to
represent the layer activation that extends into executions
after returning the method where the layer is activated.

2.3 An AOP-based Solution and Its Problem
A possible solution to switch context is to use an AspectJ-

like pointcut and low-level context activation/deactivation

1 pointcut RFEvent(): execution(

2 void DeciveController.onBuildingEntered);

3 before(Object o): RFEvent() && this(o)

4 && if(Layer.isActive(GPSNavi)){

5 powerOffDevices();

6 Composition.deactivateLayer(GPSNavi);

7 Composition.activeLayer(RFNavi);

8 startDevices();

9 }

Figure 2: Example of context transition in AspectJ

primitives (such as ContextJ reflection API) to declare an
advice that makes context transitions. We consider that, af-
ter the transition, the context activation lasts until the next
event that deactivate the activated context is fired, which
can also be captured by using a pointcut.

Figure 2 shows the pedestrian navigation example writ-
ten in AspectJ. The RFEvent() pointcut captures the exe-
cution of onBuildingEntered() method declared in Device-

Controller. The advise is executed before the onBuildin-

gEngtered() method is executed. It firstly checks whether
the GPSNavi layer is active or not by using the isActive()

method provided by the ContextJ reflextion API; if so, then
it turns the GPS receiver off, deactivate GPSNavi, activate
RFNavi, and starts the RFID reader.

However, these imperative primitives for context activa-
tion/deactivation make it difficult to reason about some re-
quired properties imposed by some context transition spec-
ifications. For example, someone would like to statically
ensure that the RFID reader always inactive in the out of
doors (e.g., by using some tools); however, ensuring it is
quite difficult in this AOP-based approach.

3. OUR PROPOSAL
This section proposes a new programming language Event-

CJ to address the aforementioned problems. To represent
event-based context transitions, EventCJ provides a new
language construct named context transition specification
that denotes context transition rules and before- and after-
procedures that are performed before and after the tran-
sition occurs, respectively. As in ContextJ, each context
is declared by using the layer declaration statement placed
within a class declaration. Thus, currently we take the layer-
in-class style1. To explain the constructs of EventCJ, we use
the same example of section 2. The structure of layer decla-
ration is identical to that of ContextJ (shown in Figure 1),
thus in this section, we omit this part.

In EventCJ, a context transition is triggered by an event.
An event is declared by using the declare event statement
with a name of event and a specification that specifies when
this event will be fired by using the AspectJ-like pointcut.
For example, in Figure 3, RFEvent is declared to be fired at
an execution of method onBuildingEntered() declared in
DeviceController. The receiver of RFEvent is specified by
the receiver clause; in this case, the receiver of RFEvent is
the instance itself that executes the onBuildingEntered()

method. In the receiver clause, we may specify a set of

1This “current” decision may be reviewed in the future,
which is not in the scope of this paper.

1 class DeviceController{

2 declare event RFEvent(DeviceController dc):

3 before execution(

4 void DeviceController.onBuildingEntered()

5) && this(dc) : receiver(dc);

6 event RFEvent: GPSNavi -> RFNavi

7 before { powerOffDevices(); }

8 after { startDevices(); }

9 ..

10 }

Figure 3: event declaration in our proposal

instances by listing multiple instances, or by using the con-
notative representation as follows:

receiver(DeviceController dc | dc.id > 0)

If the receiver clause is not provided, the effect of context
transition is global.

Figure 3 also describes an example of a context transi-
tion specification that specifies how the receiver of events
switches its active contexts. The specification starts from
the keyword event, followed by a sequence of event names.
In Figure 3, this sequence of events is specified as a single
event RFEvent, but we can also specify a pattern of events.

This sequence of event names is followed by a context tran-
sition rule that specifies how the context of the receiver of
events changes with respect to the received events. For ex-
ample, the context transition rule GPSNavi -> RFNavi de-
scribed in Figure 3 specifies that if GPSNavi exists in the
set of activated contexts, then the GPSNavi context is deac-
tivated and the RFNavi context is activated. The left-hand
side of -> is a condition that restricts when the context tran-
sition can occur. In the above example, the context transi-
tion to RFNavi will not occur unless GPSNavi is activated.

Besides the operator ->, we can also use a context transi-
tion operator +> that indicates the context of the left-hand
side will not be deactivated and the context of the right-hand
side will be activated. We can use a notation * to represent
a (possibly empty) set of currently activated contexts. Fur-
thermore, we can use a notation . to represent “nothing.”
For example, we can encode the execution that all the acti-
vated contexts are deactivated when the navigation system
is turned into manual mode:

event SetManual: * -> . ..

We can create a composite context transition rule by con-
catenating each context transition rule by using || (the first
matched context transition rule is selected) and && (all the
context transition rules are selected iff all the rules satisfy
the conditions). For example, the following context transi-
tion rule specifies that if GPSNavi is active in the receiver
of RFEvent, it is deactivated and RFNavi becomes active;
otherwise, if RFNavi is active, it is deactivated and GPSNavi

becomes active:

1 event RFEvent: GPSNavi -> RFNavi

2 || RFNavi -> GPSNavi ..

We can also restrict the condition that specifies when the
context transition occurs. For example, in Figure 3, RFNavi

Figure 4: Example of context transitions in the
pedestrian navigation system

will be activated whenever an instance of DeviceController
receives an event RFEvent and GPSNavi is active, but we can
also represent an exclusive match (i.e., the condition where
GPSNavi is active and no other contexts are active) as follow:

event RFEvent: GPSNavi! -> RFNavi ..

Furthermore, we can specify the not condition. For exam-
ple, we can declare a rule specifying that if RFNavi is not
active, then it will be activated:

event RFEvent: !RFNavi +> RFNavi ..

Finally, we can specify the procedures that is executed
before and after the transition occurs by using the before

block and the after block, respectively. For example, in
Figure 3, powerOffDevices() is executed before the con-
text transition and startDevices() is executed after the
context transition. Note that, before the context transition,
GPSNavi is still active and RFNavi is not active yet. Thus,
the execution of powerOffDevices() results in the execution
where the device controller turns the GPS receiver off.

By EventCJ, we can declaratively specify which context
is activated by which event, and this activation is preserved
until the next event that deactivate the context is fired. The
specification that specifies when each context is (de)activated
is thus separated from the program. We do not have to write
any auxiliary context management code (such as storing the
context that was active last time and retrieving it) that can
easily be scattered into the program written in ContextJ.

Unlike the pure AOP approach sketched in section 2.3, in
EventCJ, where the layer activation occurs is restricted by
the pointcut. Even though there may be some consistency
issues (unlike the with block statement, there may be some
possibilities that an event that triggers the activation of cer-
tain layer occurs during a certain action), this restriction
may help us to avoid such inconsistency by analyzing code
(possibly by using some tools). Furthermore, declaration
of context transition rules helps validation of some required
properties that the contexts should satisfy. For example,
from the context transition rules we can form a state ma-
chine shown in Figure 4. This state machine ensures that
the contexts GPSNavi and RFNavi will not become active at
the same time, and provided that the GPSEvent event will
not be fired inside the building and the RFEvent event will
not be fired outside the building, it can easily be ensured
that RFNavi will not become active outside the building.

4. CASE STUDY
This section shows that EventCJ is expressive enough

to implement applications straightforwardly with respect to

Figure 5: Client of the money transfer system

1 class TransferSystem{

2 void transfer(Account from, Account to, int am){

3 from.debit(am);

4 to.credit(am);

5 }

6 layer Encryption{

7 void transfer(Account from, Account to, int am){

8 proceed(from, to, encrypt(am));

9 }

10 }

11 layer Logging{

12 after void transfer(Account from,

13 Account to, int am){

14 Logger.logTransfer(from, to, am);

15 }

16 }

17 /* other methods and constructors */

18 }

Figure 6: The class TransferSystem in the money
transfer system

their specifications by using a simple money transfer system
[2] that handles the transfer of an amount of money from
one bank account to another.

Figure 5 shows the GUI part of the system. Here the user
AOTANI logs in and transfers 10,000 yens from his account
to KAMINA’s account. When the start button is pressed,
it starts the money transfer.

The two check boxes “Encryption” and “Logging” control
the encryption and logging functions, respectively. If the
check box “Encryption” is checked, the system encrypts the
information about the amount of transferred money. If the
check box “Logging” is checked, the system logs a sequence
of operations executed during the money transfer: i.e., deb-
iting 10,000 yens from AOTANI and crediting 10,000 yens
to KAMINA.

The implementation of the money transfer system in EventCJ
is straightforward. Figures 6 and 7 show the TransferSys-

tem and Account classes that implement the core parts of the
system. The behaviours of encryption and logging functions
are implemented modularly as layers, namely Encryption

and Logging.
Each layer is activated and deactivated when the state

of the corresponding check box is changed. This can be
achieved straightforwardly by (1) declaring an execution of
the methods invoked when the check boxes change their

1 class Account{

2 void credit(int am){...}

3 void debit(int am){...}

4 layer Encryption{

5 void credit(int am){

6 proceed(decrypt(amount));

7 }

8 void debit(int am){

9 proceed(decrypt(amount));

10 }

11 }

12 layer Logging{

13 after void credit(int am){

14 Logger.logCredit(this, am);

15 }

16 after void debit(int am){

17 Logger.logDebit(this, am);

18 }

19 }

20 /* other methods and constructors */

21 }

Figure 7: The class Account in the money transfer
system

states as an event and (2) changing the states (active or
inactive) of the layers when the event occur:

1 /* activating/deactivating the encryption layer*/
2 declare event SwitchEncryption: before execution(

3 /*handler for changes of the encryption check box*/);
4 event SwitchEncryption:

5 !Encryption +> Encryption //activating Encryption

6 || Encryption -> . //deactivating Encryption

7 ; //no procedures is executed

9 /* activating/deactivating the logging layer*/
10 declare event SwitchLogging: before execution(

11 /*handler for changes of the logging check box*/);
12 event SwitchLogging:

13 !Logging +> Logging //activating Logging

14 || Logging -> . //deactivating Logging

15 ; //no procedures is executed

Lines 2–7 declare an event and context transition rules
regarding the Encryption layer. Lines 2–3 declare the event
SwitchEncryption and specify that it is fired before the ex-
ecution of the handler for the state change events of the
encryption check box. When SwitchEncryption occurs, the
layer Encryption is activated if it is not active and is deac-
tivated otherwise. Neither before nor after procedures are
specified. Lines 10–15 declare an event and context transi-
tion rules of the Logging layer in the same way.

5. RELATED WORK
JCop [4] is a successor of ContextJ that supports declar-

ative statements specifying where each layer to be active
with respect to control flows by using an AspectJ-like point-
cut syntax. Although JCop is developed independently of
EventCJ, both share the same motivation. JCop can sep-
arate the specification of event specific context activation
from the program, thus it enables modular implementation

of context dependent features in event-based applications
such as GUI applications. However, it does not support
EventCJ-like declarative statements for context transition
rules and procedures associated with context transitions.
Thus, validation of some properties that the context should
be satisfy would be rather difficult in JCop.

There are some programming languages designed for event-
based programming. EventJava [7] is an extension of Java
that seamlessly integrates events with methods and broad-
casting with unicasting of events. In EventJava, each event
is declared and invoked as a method, but broadcasting of
events (syntactically like a static method call) and event
correlations (specifying the pattern of events to react) are
supported. Each event conveys attributes that forms a con-
text, and this context is customizable [10], but this context
is global and only one context is supported per application.
ECaesarJ [14], an extension of CaesarJ [5], provides a mech-
anism to declare events and their handlers. By using them,
we can encode context transitions like that explained in this
paper and their associated procedures. However, in ECae-
sarJ, the context activation does not cause the change to the
context dependent behaviors that is supported in EventCJ.
Furthermore, ECaesarJ can capture only external events
that are explicitly fired by the source of events, whereas
in EventCJ, implicit internal events can also be captured by
using pointcuts.

CSLogicAJ [16] is a programming language features the
adaptation of service behavior by context-sensitive service
aspects. It is based on LogicAJ [15] that is an aspect-
oriented extension of Java supporting metavariables in point-
cuts. As in EventCJ, context change is modeled in terms of
join points of the system. CSLogicAJ is based on the OSGi-
based middleware, thus only services available in the local
OSGi registry can be intercepted.

Context activation per instance was also proposed in Nex-
tEJ [11], which extends the with block statement to spec-
ify the instances that are affected by the context activation
within a specific control flow. Unlike EventCJ, the context
activation semantics of NextEJ is rather similar with that
of ContextJ (the scope of context activation is controlled
by the with block statement), but NextEJ also provides the
morphing of instance types (the type of instance can be re-
fined within the block statement so that it acquires new be-
haviors). Realizing such morphing is very hard in EventCJ.
Since context activation of NextEJ is based on the with

block statements, it is not suitable to represent event-based
context transitions.

Languages for trace/event-based AOP [1, 17] use point-
cuts similar to EventCJ. Although current EventCJ does
not observe sequences of events but only one event, it might
be one option in future versions to use such a language to
handle sequences of events if that is necessary and useful to
represent context transitions.

6. CONCLUSION AND FUTURE WORK
The event-based context transition in EventCJ makes it

possible to declaratively specify how the set of active con-
texts associated with an instance changes with respect to its
receiving events. Events are declared with pointcuts that
specify where each event is fired in the join points of the
system, thus we can flexibly specify the execution points
where context transition occurs responding external events.
By the layer construct taken from ContextJ, we can im-

plement context dependent behaviors, but the activation of
these behaviors now can extend over multiple methods. The
state machine like notation makes it easier to ensure some
required properties are satisfied in the program. The case
study of banking account application expects its applicabil-
ity to business applications.

However, this work is still in its early stage. One of
the planned future work is to implement a compiler and
re-implement the existing real applications to evaluate the
effectiveness of EventCJ. As mentioned above, context tran-
sition rules help validation of some properties that the con-
texts should satisfy. Thus, applying automated checking
methods (such as model checking) to the program written
in EventCJ will also be an important direction of our re-
search.

7. REFERENCES
[1] Chris Allan, Pavel Avgustinov, Aske Simon

Christensen, Laurie Hendren, Sascha Kuzins, Ondr̂ej
Lhotäk, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace
matching with free variables to AspectJ. In
Proceedings of OOPSLA’05, pages 345–364, 2005.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt,
and Hidehiko Masuhara. ContextJ: Context-oriented
programming with Java. In Proceedings of the JSSST
Annual Conference 2009, 2009.

[3] Malte Appeltauer, Robert Hirschfeld, and Hidehiko
Masuhara. Improving the development of
context-dependent Java application with ContextJ. In
COP’09, 2009.

[4] Malte Appeltauer, Robert Hirschfeld, Hidehiko
Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-specific software composition in
context-oriented programming. In Proceedings of the
International Conference on Software Composition
2010 (SC’10), 2010. to appear.

[5] Ivia Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus
Ostermann. An overview of CaesarJ. In Transactions
on Aspect-Oriented Software Development I, volume
3880 of LNCS, pages 135–173, 2006.

[6] Pascal Costanza and Robert Hirschfeld. Language
constructs for context-oriented programming – an
overview of ContextL. In Dynamic Language
Symposium (DLS) ’05, pages 1–10, 2005.

[7] Patrick Eugster and K.R. Jayaran. EventJava: An
extension of Java for event correlation. In ECOOP’09,
volume 5653 of LNCS, pages 570–594, 2009.

[8] Robert Hirschfeld, Pascal Costanza, and Michael
Haupt. An introduction to context-oriented
programming with ContextS. In GTTSE 2007, volume
5235 of LNCS, pages 396–407, 2008.

[9] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125–151, 2008.

[10] K.R. Jayaran and Patrick Eugster. Context-oriented
programming with EventJava. In COP’09, 2009.

[11] Tetsuo Kamina and Tetsuo Tamai. Towards safe and
flexible object adaptation. In COP’09, 2009.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97, 1997.

[13] Gregor Kiczales, Erik Hilsdale, Jim Hugunin,
M ik Kersten, Jeffrey Palm, and William G. Grisword.
An overview of AspectJ. In ECOOP 2001, pages
327–353, 2001.

[14] Angel Nú nez, Jacques Noyé, and Vaidas Gasiūnas.
Declarative definition of contexts with polymorphic
events. In COP’09, 2009.

[15] Tobias Rho, Günter Kniesel, and Malte Appeltauer.
Fine-grained generic aspects. In FOAL’06, 2006.

[16] Tobias Rho, Mark Schmatz, and Armin B. Cremers.
Towards context-sensitive service aspects. In
Proceedings of the Workshop on Object Technology for
Ambient Intelligence and Pervasive Computing,
collocated with ECOOP’06, 2006.

[17] Robert J. Walker and Kevin Viggers. Implementing
protocols via declarative event patterns. In
Proceedings of FSE’04, pages 159–169, 2004.

