
Method Safety Mechanism for Asynchronous Layer
Deactivation

Tetsuo Kamina
Ritsumeikan University, Japan

kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology,

Japan
aotani@is.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology,

Japan
masuhara@acm.org

Atsushi Igarashi
Kyoto University, Japan

igarashi@kuis.kyoto-
u.ac.jp

ABSTRACT
We propose a context-oriented programming (COP) lan-
guage that allows layers to define base methods, while lay-
ers can be asynchronously activated and deactivated. Base
methods in layers greatly enhances modularity because they
extend classes’ interface without modifying the original class
definitions. However, calling such a method defined in a
layer is tricky as the layer may not be active when the
method is called. We tackle this problem by introducing
a method lookup mechanism that uses the lexical scope of a
method invocation to COP; i.e., besides currently activated
layers, the layer where the method invocation is written,
as well as layers on which that layer depends, are consid-
ered for method lookup. We implemented this mechanism
in ServalCJ, a COP language that supports asynchronous
layer activation as well as synchronous layer activation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages

Keywords
Layer-introduced base method, ServalCJ

1. INTRODUCTION
Context-Oriented Programming (COP) is an approach to

improve modularity of variations of behavior that depend

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
COP’15 July 05 2015, Prague, Czech Republic
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3654-3/15/07 ...$15.00
DOI: http://dx.doi.org/10.1145/2786545.2786550

on contexts [12]. COP languages provide linguistic con-
structs that modularize such variations using layers1, and
that dynamically activate/deactivate them according to the
executing contexts [8, 12]. These constructs give advantages
to COP in modularity and ensuring consistency in dynamic
changes using scoping [8] or model checking [16], compared
with over existing object-oriented mechanisms and practices
like design patterns [5]. A layer defines partial methods,
which run before, after, or around a call of method with
the same signature defined in a class only when the layer
is active. In the rest of this paper, we call a method in a
layer that overrides other methods as a partial method, and
a method in a layer that is not a partial method (i.e., that
introduces a new signature) as a base method in a layer.

Although many of COP languages only support partial
methods, base methods in layers are also known to be use-
ful in COP [13]. For example, an adaptive user interface
for a text editor may provide different menu items for the
contents opened by that editor. The menu items and their
associated behaviors are dynamically changed with respect
to the currently opened file: if the user is opening a pro-
gram, the editor provides an “execute” menu item, and the
behavior that triggers an execution of that program is asso-
ciated with that menu item. This menu item and behavior
are defined in a layer, namely Programming, where the new
behavior is implemented by a base method in that layer.
Then, this layer can be overridden by another layer, namely
Debugging, which is activated only when the user performs
debugging. The Debugging layer would like to call the “ex-
ecution behavior” implemented by the base method defined
in Programming. Base methods in layers greatly enhance
modularity because they extend classes’ interface (e.g., the
editor’s class is extended in Programming) that is accessed
by the other layer (e.g., Debugging) without modifying the
original class definition.

Some formal calculi have been proposed to support such
an extension, e.g., (1) requiring a depended layer (i.e. a layer
that provides base methods) to be active when the depend-
ing layer (a layer that uses those methods) is executing [13]
and (2) activating the depended layer on-demand when the

1In this paper, we focus on layer-based COP languages.
Considerations of our approach under other COP languages
such as Subjective-C [10] and Korz [22] are reserved as fu-
ture work.

depending layer is executing [15], and they are proven to be
type-sound.2

However, these approaches cannot work with the asyn-
chronous layer activation [10, 11, 16, 4, 21] in a type-safe
manner. The method lookup in existing COP semantics con-
siders all the activated layers and the class of the method re-
ceiver. This semantics does not raise a problem when layers
are activated using with-blocks where corresponding layer
activation is synchronous with the currently executing block;
however, it raises a problem in asynchronous layer activa-
tion where layers are activated and deactivated by external
events such as changes in the external environment and oper-
ations by the user. These events may occur at any program
execution points. Thus, it is possible that the layer provid-
ing a method to currently executing method is eventually
deactivated, resulting in a method-not-understood error.

In this paper, we propose an another method lookup mech-
anism for type-safe layer deactivation. In our mechanism,
methods are searched in the layer where the method invoca-
tion is placed, and the layers on which that layer depends,
as well as currently activated layers. This inclusion of the
“lexical scope” for method lookup addresses the problem of
method safety mentioned above. This mechanism is im-
plemented in ServalCJ [19], a COP language that supports
asynchronous layer activation as well as synchronous layer
activation.

The rest of this paper is structured as follows. Section 2
overviews COP mechanisms such as layers, layer activation,
and base methods in a layer. This section also identifies the
problem that is tackled in this paper. Section 3 illustrates
our proposal of type-safe method lookup for COP. Section 4
compares our proposal with existing approaches. Section 5
discusses the related work. Finally, Section 6 concludes this
paper.

2. REVIEWING COP MECHANISMS
We show a motivating example of adaptive user interface,

which comprises a text editor program that is inspired by
the program editor example shown in [2]. Our example in-
cludes a class Editor (as well as other classes) to represent
an editor view for the user. As shown below, this user inter-
face provides a menubar (as well as other widgets), which is
shown by calling showMenuBar.

class Editor {

JMenu menu;

...

void showMenuBar() { menu.revalidate(); }

}

2.1 Layers and Partial Methods
We consider an additional feature to support program-

ming by using this editor. This feature adaptively becomes
available with respect to the type of a file opened by that
editor and is dynamically composed with the system. In
COP, such a dynamically composed feature is implemented
using a layer. The following Programming layer implements
this feature:
2Precisely, there is a flaw in the proof of type soundness for
the on-demand activation [15]. To guarantee type sound-
ness, we need to modify the reduction of method invocation
to enclose the entire method execution within the activation
of all the required layers.

layer Programming {

class Editor {

JMenuItem start = .., stop = .., resume = ..;

void showMenuBar() {

menu.add(start);

menu.add(stop);

menu.add(resume);

proceed();

}

}

/* other (partial) class declarations */

}

A partial method showMenuBar overrides the base method de-
clared in Editor when Programming is active (i.e., when it is
dynamically composed with the application, which is called
layer activation). The proceed call invokes the overridden
behavior.

In ContextJ [1], the following with-block is used for layer
activation.

Editor editor = new Editor();

with Programming { editor.showMenuBar(); }

The layer activation is effective in the dynamic extent of
the with-block. Thus, the Programming layer is active when
showMenuBar is called and thus the partial method defined in
Programming (that adds several menu items for controlling
program execution) is called.

2.2 A Base Method in a Layer
In some COP languages like JCop [3], a layer may also

declare a base method, as shown in the following example:

layer Programming {

class Editor {

void execute() { .. }

JTextArea getConsole() { .. }

.. /* same as above */

}

}

In this example, two base methods execute and getCon-

sole are declared in the layer Programming. These methods
are not visible from the base program. Thus, the primary
purpose of a base method declared in a layer is that it is
called from the same layer (or other layers depending on
that layer). For example, the execute method defines the
behavior to start the execution of program. This behav-
ior is registered as an action associated with the menu item
added by Programming and this is not visible from the base
program.

We note that a base method declared in a layer is not just
an auxiliary method visible only within that layer; some-
times, it should be visible from other layers. For example,
in the adaptive user interface example, we may also consider
another additional feature of debugging of the currently de-
veloping program. This feature is implemented by the layer
Debugging that is shown in Figure 1. This layer declares
two partial methods, showMenuBar and execute, and the
latter calls getConsole. The getConsole method is added
by Programming, which means that Debugging assumes the
existence of Programming and in Figure 1, this dependency
is denoted by the requires clause in the first line of the
layer declaration.

layer Debugging requires Programming {

class Editor {

JMenuItem stopDebugging = ..;

void showMenuBar() {

// a menu item for stopping debugging

menu.add(stopDebugging);

proceed();

}

void execute() {

.. /* enabling the step-by-step execution */

.. getConsole() ..

/* accessing console to display debug info */

}

}

}

Figure 1: Layer dependency

This requires clause is first introduced by ContextFJ [13]
and means that, when Debugging is activated, it is necessary
that Programming is also activated. To activate Debugging,
we need to activate Programming before, which means that
Debugging can be activated only within the with-block that
activates Programming.

Editor editor = new Editor();

with Programming {

with Debugging { editor.execute(); }

}

Within with Debugging, both Programming and Debugging

are active, and the partial methods in Debugging override
the ones in Programming because Debugging is the most re-
cently activated layer. Thus, the above execute call safely
calls the getConsole provided by Programming. The activa-
tion of Debugging that is not enclosed within the activation
of Programming results in a compile error in ContextFJ.

Problem. The existing method lookup semantics in COP,
where only all the activated layers and the class of the method
receiver are considered, cannot describe asynchronous layer
(de)activation, where layer activation does not enclosed within
the statically-known with-blocks, in a type-safe manner.3

Unlike with-blocks where layer activation is synchronous
with the currently executing block, in asynchronous layer
activation, layer activation and deactivation are triggered
by external events such as changes in the external environ-
ment and operations by the user; i.e., layer (de)activation
may occur at any program execution points. For example,
in Figure 1, deactivation of Programming may occur just
before the call of proceed in execute, resulting a method-
not-understood error because this method is introduced by
Programming.

Supporting base methods in a layer in the asynchronous
layer activation is important. Actually, a number of COP
languages that provide asynchronous layer activation have
been proposed [10, 11, 16, 4, 21]. Asynchronous layer ac-
tivation is useful in a number of COP applications such as
ubiquitous computing applications and adaptive user inter-
faces. The program editor example used in this paper also

3Moreover, ContextFJ does not support layer deactivation
(i.e., without) at all.

falls into this category, because events that activate layers
are generated by the user’s operations.

Besides ContextFJ, there exists a couple of approaches
supporting base methods in a layer. However, all these ap-
proaches do not address the above issue. We discuss the
existing approaches in Section 4.

3. SAFE METHOD LOOKUP FOR COP
There are a couple of approaches to tackle the aforemen-

tioned problem. We may prohibit the layer deactivation
when it is not safe and postpone the deactivation when it
becomes safe. If we take this approach, we need to signif-
icantly change the underlying dynamic semantics provided
by ContextFJ. Another approach is to change the way of
method lookup to avoid the method-not-understood error
where only changes in the method lookup is required and the
dynamic semantics and the proof of type soundness should
be almost identical to those in ContextFJ.

We decided to apply the latter approach because it re-
quires less effort. The idea is to use the enclosing layer for
method lookup, i.e., for the method lookup, not only cur-
rently activated layers and the base class, but also the layer
where the method invocation is written and the layers on
which that layer depends are considered.

We formalize the idea as a simple calculus based on Con-
textFJ [13], whose syntax is provided as follows:

CL ::= class C / C { C f; K M }

K ::= C(C f){ super(f); this.f = f; }

M ::= C m(C x){ return e; }

e, d ::= x | e.f | e.m(e)@X | new C(e)

| proceed(e) | v<C,L,L>.m(v)
v, w ::= new C(v)

X ::= L | ·

Unlike the existing COP languages, the calculus does not
provide syntax for layers. Partial methods are registered in
a partial method table PT , which maps a triple C, L, and
m of class, layer, and method names to a method definition.
The runtime expression new C(v)<C,L

′
,L>.m(e), where L

′

is assumed to be a prefix of L, means that m is going to be
invoked on new C(v). The annotation <C,L

′
,L> indicates

the cursor where method lookup should start.
A method invocation is annotated with a lexical context X.

It is assumed that if C m(C x) { return e; }∈ PT (D, L, m)
and e0.m1(e)@X is a subexpression of e, then X = L. Simi-
larly, if C m(C x) { return e; } is not defined in PT and
defined in some class D, and e0.m1(e)@X is a subexpression
of e, then X = ·.

The dependency between layers is modeled by a binary
relation R on layer names; (L1, L2) ∈ R intuitively means
that L1 requires L2. We assume a fixed dependency re-
lation and write L req Λ, read “layer L requires layers Λ,”
when Λ = {L′|(L, L′) ∈ R}. We define two auxiliary func-
tions, requires and filter , which calculates transitive closure
of req and removes duplication of layer names, respectively:

L req Λ requires(Λ); L = L
′

requires(L) = L
′

L req ∅
requires(L) = L

filter(L) = L if ∀L1, L2 ∈ L,
L1 6= L2

filter(L; L; L
′
; L; L

′′
) = filter(L; L; L

′
; L
′′
) otherwise

A program (CT , PT , e) consists of a class table CT (that

maps a class name to a class definition, as in ContextFJ),
a partial method table PT , and an expression e that cor-
responds to the body of the main method. We assume CT
and PT are fixed and satisfy some sanity conditions such as:
for any C in the domain of CT , CT (C) is defined; for any
(m, C, L) in the domain of PT , PT (m, C, L) is defined; and
there are no cycles in the transitive closure of / (extends).

We define the method lookup function mbody(m, C, L1, L2)
that returns a pair x.e of parameters and an expression of
method m in class C when the search starts from the sequence
of layers L1. L2 keep track of the layers that are active when
the search initially started. It also returns the name of class
and the sequence of layers where the method has been found,
which will be used in reduction rules to deal with proceed.
mbody is defined by following four rules:

class C / D { .. C0 m(C x){ return e; } .. }

mbody(m, C, •, L) = x.e in C, •

PT (m, C, L0) = C0 m(C x){ return e; }

mbody(m, C, (L
′
; L0), L) = x.e in C, (L

′
; L0)

class C / D { .. M } m 6∈ M

mbody(m, D, L, L) = x.e in E, L
′

mbody(m, C, •, L) = x.e in E, L
′

PT (m,C,L0) undefined mbody(m, C, L
′
, L) = x.e in D, L

′′

mbody(m, C, (L
′
; L0), L) = x.e in D, L

′′

We show the underlying operational semantics where this
method lookup is used. This operational semantics is given
by a reduction relation of the form e | L −→ e′ | L′, which
is read “expression e under activated layers L reduces to
e′ under L

′
.” In particular, formal semantics for method

invocation is specified by the following three reduction rules.

L
′

= filter(L; requires(L); L)

new C(w).m(v)@L | L −→ new C(w)<C,L
′
,L
′
>.m(v) | L

This first rule is important; it ensures that, besides cur-
rently activated layers L, the lexical context L is always con-
sidered when the method is called. This rule is for method
invocation where the cursor of the method lookup has not
been “initialized”; the cursor is set to be at the receiver’s
class and the sequence of layers computed by filter and
requires using the currently activated layers L and the layer
L attached to that method invocation.

The following two rules are straightforward adaptation of
the method invocation on the runtime expression of the form
new C(v)<C,L,L>.m(v) from ContextFJ:

mbody(m, C, L
′′
, L
′
) = x.e in C′, • class C′ / D {..}

new C0(v)<C,L
′′
,L
′
>.m(w) | L −→

»
new C0(v)/this,
w /x

–
e | L

In this rule, the receiver is new C(v) and the location of
the cursor is <C′,L

′′
,L
′
>. When the method body is found

in the base-layer class C′ (denoted by “in C′, •”), the whole
expression reduces to the method body where the formal pa-
rameters x and this are replaced with the actual arguments
w and the receiver, respectively.

mbody(m, C, L
′′
, L
′
) = x.e in C′, (L

′′′
; L0)

class C′ / D {..}

new C0(v)<C,L
′′
,L
′
>.m(w) | L −→24 new C0(v) /this,

w /x,

new C0(v)<C
′,L
′′′
,L
′
>.m/proceed

35 e | L
This rule deals with the case where the method body is found
in layer L0 in class C′. In this case, proceed in the method
body is replaced with the invocation of the same method,
where the receiver’s cursor points to the next layers L

′′′
.

To discuss how this method lookup mechanism works safely
with asynchronous layer (de)activation, we also introduce
two reduction rules representing layer activation and deac-
tivation, which occur non-deterministically:

f(L, L) = L
′

f = activate or deactivate

e | L −→ e | L′

where activate and deactivate are defined as follows:

activate(L, L) = L; L if L 6∈ L

activate(L, L
′
; L; L

′′
) = L

′
; L
′′
; L otherwise

deactivate(L, L) = L if L 6∈ L

deactivate(L, L
′
; L; L

′′
) = L

′
; L
′′

otherwise

The function activate put the specified layer L at the right-
most position of the activated layer L; if L is already in L,
this function changes the order of activated layers so as to
the most recently activated layer has the highest priority.
The function deactivate just removes the specified layer L (if
exists) from the currently activated layers L.

Example. Suppose the situation where execute is called
on an instance of Editor with activated layer Debugging,
and Debugging is asynchronously deactivated during the ex-
ecution:

new Editor().execute()|Debugging
(method body in Debugging is dispatched)
−→∗ new Editor().getConsole()@Debugging|Debugging
(Debugging is deactivated)
−→ new Editor().getConsole()@Debugging

(method body is found in filter(requires(Debugging)))
−→∗ {the body of getConsole in Editor in Programming}
−→ · · ·

These reductions demonstrate that the call of getCon-

sole, which is written in the layer Debugging, succeeds even
though Debugging is not active when that method is called,
illustrating the type safety of our calculus.

Implementation. We implemented this mechanism in Ser-
valCJ [19], a COP language with a generalized layer acti-
vation mechanism.4 Due to the limited space, we do not
discuss the implementation details in this paper.

4. DISCUSSION
One traditional question about COP is how to react deac-

tivation of a layer whose partial method is currently execut-
ing. Most COP languages adopt the so-called loyal strategy

4https://github.com/ServalCJ/pl

[9], which ensures the completion of the partial method exe-
cution and thus the making effect of the deactivation is post-
poned. Our approach is considered as a natural extension of
this strategy: the execution of the required behavior is also
ensured when executing the partial method in the requiring
layer. Furthermore, our approach ensures the execution of
the required layer even when it is not activated at all. In
this sense, our approach is also considered as a type-safe ap-
plication of on-demand activation [15] to the asynchronous
layer deactivation.

However, our approach raises a subtle problem when the
layer deactivation is hard-wired within the layer declaration
itself:

1 class C { Object n() { ... } }

2 layer L {

3 class C{

4 Object m() { return without L this.n(); }

5 Object n() { ... }

6 }

7 }

The class C provides the method n, which is overridden in
the layer L. The class C in L introduces the method m, which
deactivate L and calls n. We expect that this call results
in the body specified in line 1 because L is intentionally
deactivated; however, in our mechanism, the definition in
line 5 is selected to execute, because the layer where the
call of n is written, which is L, is always considered for the
method lookup.

The same issue arises in ServalCJ when we want to ensure
deactivation of some layer in some specific control flow [20],
which is not possible in ServalCJ. Possibly we may consider
an annotation on that layer to declare that this layer’s de-
activation is ensured but this layer cannot introduce a base
method, though this mechanism is reserved as future work.

In the followings, we compare our approach with other
existing approaches to provide base methods in layers.

4.1 ContextFJ
We already introduced the ContextFJ approach in Section

2.2. One problem in the ContextFJ approach is that it does
not interact nicely with dynamic layer deactivation. In fact,
ContextFJ does not support without. If layers can dynami-
cally be deactivated, the invocation of a method introduced
by the deactivated layer results in a failure when the layer
depending on the deactivated layer calls that method. To
statically check such an error, we need to gather informa-
tion about“which layer is absent”at each deactivation point,
which is not be very easy, especially in the open-world set-
ting. In short, our mechanism is a simple way to support
base methods in a layer in COP languages with dynamic
and asynchronous layer deactivation in a type-safe manner.

Nevertheless, we do not argue that requires in ContextFJ
should be replaced with our mechanism. In particular, the
requires in ContextFJ would exert its usefulness on re-
quiring the interface of layers (although the requires in
[13] requires the implementation of the specified layers.) In
ContextFJ, we may assume that the layers providing this
interface are active but do not have to concern about the
concrete implementations. Likewise, we may write the re-

quires clause like “requires LayerA or LayerB.” On the
other hand, our mechanism always requires implementa-
tions, because the required layers are used for lookup of

method bodies.

4.2 On-Demand Activation
On-demand activation [15] has been proposed to avoid

the absent layer checking when requires is used with with-

out. Instead of requiring that the depended layers have been
activated, it implicitly activates layers on which currently
activated layer depends when these layers are required, as
specified by the following activates clause:

layer Debugging activates Programming {

/* The body is the same as above */ }

We can activate Debugging anywhere, regardless of the con-
dition whether this activation is enclosed with the activation
of Programming; if Programming is not active, it is implicitly
activated when currently executing behavior requires that.

This mechanism implicitly activates the layer specified by
requires when that layer is asynchronously deactivated.
However, this mechanism fails if currently executing layer
is deactivated, which is explained in the following code:

layer L {

class C {

Object m() { // deactivating L

return this.n(); }

Object n() { // introduced by L

return new Object(); }

}

}

The class C in layer L defines partial methods m and n, and m

calls n, which is introduced by L. Since asynchronous layer
deactivation may occur at any execution points in the on-
demand activation mechanism, it is possible that the de-
activation of L occurs just before the call of n. Then, the
method lookup for n is performed without the existence of
L, leading to the method-not-understood error.

4.3 Layer Inheritance
Our approach is considerably similar with the layer inher-

itance approach; i.e., the requires relations look like the
extends relations between layers. JCop [3] supports such
layer inheritance mechanism.

Currently there are no formal semantics for layer inheri-
tance and the type-safety of layer inheritance w.r.t. the asyn-
chronous layer deactivation is not clear.5 In JCop, layers are
instantiated, and layers are not directly activated but in-
stances of layers are. If an instance p1 of Programming and
instance d1 of Debugging are activated, the partial method
defined in Programming is executed once for p1 and once for
d1, which would result in multiply displaying the same menu
items for the programming feature. On the other hand, our
approach is based on the COP model where a layer is not a
first-class citizen, and prohibits such a duplication.

5. RELATED WORK
Inoue et al. discuss a safe type system for JCop [14]. Ba-

sically, it is an application of type system developed in Con-
textFJ; however, it also supports layer inheritance and first-
class layers. It does not deal with layer deactivation directly;
instead, it supports an idiom, which is called layer swapping,
for layer deactivation. It is prohibited to deactivate layers

5JCop basically provides synchronous layer (de)activation.

using without; however, we may “swap” a layer with other
one, which is compatible with the swapped layer.

Dependency between layers may also be represented in
the form of composite layers [7, 18]. In [7], an extension of
ContextL [8] with layer composition operators such as and-
composition and or-composition. At each layer activation
point, it calculates the set of depended layers and activates
them. If that set is ambiguous, it suspends the execution un-
til when the user resolves this ambiguity. In [18], a similar
mechanism is discussed in [18] under event-based layer tran-
sition [16]. FECJ◦ [17] formalizes the operational semantics
of composite layers implemented in EventCJ [16]. The de-
pendency between layers can also be specified in some COP
languages such as Subjective-C [10] and Ambience [11]. In
these languages, such dependency is checked at runtime.

Our mechanism is similar with Newspeak’s method lookup
[6] in that the lexical scope is used for method lookup. While
Newspeak uses the lexical scope to resolve method collisions
between the outer class and the super classes, our mecha-
nism uses the lexical scope (and the definitions on which that
scope depends) as a safety-net ensuring that at least there is
a behavior while executing the current method, even when
the enclosing layer is immediately deactivated. Furthermore,
our method lookup includes the dynamically activated lay-
ers, and we need to define the appropriate ordering between
those activated layers, the layer comprising the lexical scope,
the layers on which that scope depends, and the base class.

6. CONCLUDING REMARKS
This paper addresses the problems of allowing layers to

declare base methods when these base methods are used
with asynchronous layer deactivation. This paper provides
a formal definition of method lookup that uses the lexical
scope of a method invocation, and informally demonstrates
how this mechanism solves the problem. This mechanism is
considered as a type-safe application of on-demand activa-
tion mechanism to the asynchronous layer deactivation that
addresses the problem of ContextFJ in supporting dynamic
layer deactivation. This mechanism is also considered as an
alternative to the layer inheritance mechanism where du-
plicated calls of partial methods do not occur at all. This
mechanism is implemented in our COP language, ServalCJ.

7. REFERENCES
[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt,

and Hidehiko Masuhara. ContextJ: Context-oriented
programming with Java. Computer Software,
28(1):272–292, 2011.

[2] Malte Appeltauer, Robert Hirschfeld, and Hidehiko
Masuhara. Improving the development of
context-dependent Java application with ContextJ. In
COP’09, 2009.

[3] Malte Appeltauer, Robert Hirschfeld, Hidehiko
Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-specific software composition in
context-oriented programming. In SC’10, volume 6144
of LNCS, pages 50–65, 2010.

[4] Engineer Bainomugisha, Jorge Vallejos, Coen De
Roover, Andoni Lombide Carreton, and Wolfgang De
Meuter. Interruptible context-dependent executions:
A fresh look at programming context-aware
applications. In Onward! 2012, pages 67–84, 2012.

[5] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina
Wulf. The role object pattern. In PLoP’97, 1997.

[6] Gilad Bracha, Peter von der Ahé, Vassili Bykov,
Yaron Kashai, William Maddox, and Eliot Miranda.
Modules as objects in Newspeak. In ECOOP’10, pages
405–428, 2010.

[7] Pascal Costanza and Theo D’Hondt. Feature
descriptions for context-oriented programming. In
DSPL’08, 2008.

[8] Pascal Costanza and Robert Hirschfeld. Language
constructs for context-oriented programming – an
overview of ContextL. In DLS’05, pages 1–10, 2005.

[9] Brecht Desmet, Jorge Vallejos, Pascal Costanza, and
Robert Hirschfeld. Layered design approach for
context-aware systems. In VaMoS’07, 2007.

[10] Sebastián González, Micolás Cardozo, Kim Mens,
Alfredo Cádiz, Jean-Christophe Libbrecht, and Julien
Goffaux. Subjective-C: Bringing context to mobile
platform programming. In SLE’11, volume 6563 of
LNCS, pages 246–265, 2011.

[11] Sebastián González, Kim Mens, and Alfredo Cádiz.
Context-oriented programming with the ambient
object systems. Journal of Universal Computer
Science, 14(20):3307–3332, 2008.

[12] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125–151, 2008.

[13] Atsushi Igarashi, Robert Hirschfeld, and Hidehiko
Masuhara. A type system for dynamic layer
composition. In FOOL’12, 2012.

[14] Hiroaki Inoue, Atsushi Igarashi, Malte Appeltauer,
and Robert Hirschfeld. Towards type-safe JCop: A
type system for layer inheritance and first-class layers.
In COP’14, 2014.

[15] Tetsuo Kamina, Tomoyuki Aotani, and Atsushi
Igarashi. On-demand layer activation for type-safe
deactivation. In COP’14, 2014.

[16] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. EventCJ: a context-oriented programming
language with declarative event-based context
transition. In AOSD’11, pages 253–264, 2011.

[17] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. A core calculus of composite layers. In
FOAL’13, pages 7–12, 2013.

[18] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. Introducing composite layers in EventCJ.
IPSJ Transactions on Programming, 6(1):1–8, 2013.

[19] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. Generalized layer activation mechanism
through contexts and subscribers. In
MODULARITY’15, pages 14–28, 2015.

[20] Jens Lincke, Robert Krahn, and Robert Hirschfeld.
Implementing scoped method tracing with ContextJS.
In COP’11, 2011.

[21] Guido Salvaneschi, Carlo Ghezzi, and Matteo
Pradella. ContextErlang: Introducing context-oriented
programming in the actor model. In AOSD’12, 2012.

[22] David Ungar, Harold Ossher, and Doug Kimelman.
Korz: Simple, symmetric, subjective, context-oriented
programming. In Onward! 2014, pages 113–131, 2014.

