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Abstract
In Context-Oriented Programming (COP), it is possible that
invalid combinations between layers (a set of activated lay-
ers that violates some required properties) occur at runtime.
Even though such combinations can be detected using run-
time checking, it potentially requires a significant amount
of cost for testing. In this paper, we propose a method to
detect invalid combinations between layers using state-of-
the-art control-flow analysis for Android applications. Using
Android specific knowledge, such as the layout file for GUI
components, reasonably precise callback sequences in An-
droid applications are actually constructed, and our method
applies this fact to the analysis of COP programs. Using a
simple example, we demonstrate how our method finds in-
valid combinations between layers.

Categories and Subject Descriptors D.2.4 [Software/Pro-
gram Verification]: Validation

General Terms Algorithms, Languages

Keywords Layer activation coverage, Callback control-
flow graph, Event-based COP

1. Introduction
Context-Oriented Programming (COP) is an approach to im-
prove the modularity of behavioral variations that depend
on contexts. A number of COP languages provide linguis-
tic constructs that modularize such variations using layers
and dynamically activate/deactivate them according to the
executing contexts (6; 8). A layer defines partial methods,
which run before, after, or around a call of a method with the
same signature defined in a class only when the layer is acti-
vated. These constructs give advantages to COP in modular-
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ity, because partial methods can change the original behavior
by activating layers without changing the base classes.

However, several COP languages activate layers indepen-
dently, which may cause invalid combinations between lay-
ers (i.e., a set of layers that violate some required proper-
ties). Even though several COP languages activate layers in
disciplined manners, e.g., using scoping (6) or composite
layers (5; 11), such activation mechanisms do not prohibit
layer activation that is mistakenly specified by the program-
mer. Even though such invalid combinations between layers
can be detected using runtime checking (7), it potentially re-
quires a significant amount of cost for testing.

In this paper, we propose a method to detect invalid com-
binations between layers that occur at runtime using static
analysis. Our method is based on control-flow analysis. We
first construct a control-flow graph (CFG) of the given ap-
plication. Then, for each layer, we identify a set of nodes
of that CFG where that layer is assumed to be activated us-
ing a simple depth-first search (DFS) algorithm, and check
whether each set satisfies the properties of layers given by
the programmer. As properties, the programmer can specify
the alternative relation (i.e., at most one layer from the spec-
ified set of layers can be activated at the same time) and the
requires relation (i.e., activation of a specified layer requires
that of other layers). We note that, in this paper, we focus on
event-based COP (10) as well as control-flow-based one (8).
Other activation mechanisms such as using conditionals (14)
are considered beyond the scope of this paper.

For constructing the CFG, we make a callback control-
flow graph (CCFG) (15), because a number of COP appli-
cations use user-driven callbacks, which make the precise
control-flow graph construction very difficult. To address
this problem, CCFG uses Android specific knowledge, i.e.,
the XML layout file equipped with the Android application
to directly connect the actions that trigger events in the user
code with the corresponding event handlers.

Using a simple example, we demonstrate how our method
finds invalid layer combinations. We tested our method on
four cases, where, in two cases, we intentionally specified
invalid layer activation, and two other cases were the cor-
rect ones. We found one false positive; in other cases, our
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public class Nav {

public void getPosition() {

System.err.println(".."); }

}

layer Outdoors {

public class Nav {

public void getPosition() {

// GPS based positioning

Location loc = ... ;

... }

} }

layer Indoors {

public class Nav {

public void getPosition() {

// Floor-specific positioning

Location loc = ... ;

... }

} }

Figure 1. Outdoors and Indoors layers

method successfully detected the invalid layer combinations.
The false positive occurred when conditions for layer activa-
tions were hardwired within the base program, which might
imply that the program should be refactored. Even though
this work is still in its early stage, we believe that this re-
search direction, i.e., using CFG for Android applications to
analyze layer activations, is promising.

2. Problem of Independent Layer Activation
Example. We explain our motivation using a simple pedes-
trian navigation system that provides behavioral variations
of positioning mechanisms and map views for both out-
door and indoor situations. Those variations, which can
be switched dynamically, are implemented using layers.
Figure 1 illustrates those layers, namely, Outdoors and
Indoors, that change the behavior of the getPosition
method in the Nav class to provide context specific posi-
tioning mechanisms (i.e., a GPS-based positioning for the
outdoor situation and a floor-specific positioning for the in-
door situation) when the corresponding layer is activated.
The map view also changes with respect to situations (i.e.,
a city map for the outdoor situation and a floor plan for the
indoor situation), which is not shown for brevity.

We also consider an additional feature, namely, a satellite
view, which can be used only when it is in the outdoor
situation. The satellite view provides a satellite image of the
city map, and it is also implemented using a layer, namely,
Satellite.

Those layers are activated and deactivated dynamically.
To ensure system consistency, there are several requirements
for layer activation.

• When Outdoors is activated, it is assumed that Indoors
is not activated, and vice versa. This is because both
provide completely alternative behaviors.

contextgroup NavGroup() {

activate Outdoors

from Nav.startOutdoors to Nav.startIndoors;

activate Indoors

from Nav.startIndoors to Nav.startOutdoors;

activate Satellite

from Satellite.switch to Satellite.switch

&& when isActive(Outdoors); }

Figure 2. Layer activation in ServalCJ

contextgroup NavGroup() {

..

activate Indoors

// specifying different event

from Nav.startOutdoors to Nav.startOutdoors;

activate Satellite

// forgetting "when isActive(Outdoors)"

from Satellite.switch to Satellite.switch; }

Figure 3. Mistakenly specified layer activation

• The activation of Satellite assumes that the activation
of Outdoors, because Satellite depends on the be-
havior provided by Outdoors such as the GPS-based po-
sitioning.

Layers can be activated by specifying dynamic extent (6;
8), generating events (10), and declaratively specifying con-
ditions when those layers are activated (14). Figure 2 de-
scribes layer activation in ServalCJ (12), which general-
izes those layer activation mechanisms in one single lan-
guage. Layers Outdoors and Indoors are activated using
events specified in the from clause, and those are activated
until other events (specified in the to clause) are gener-
ated. The name of the event is prefixed by the class name
where that event is declared. In ServalCJ, each event can be
generated using a syntax equivalent to a method call, e.g.,
startOutdoors(). Each event generation is semantically
equivalent to the corresponding join point in AspectJ. Thus,
when the program execution reaches the join point where
startOutdoors is fired, then Outdoors is activated. The
activation of Satellite is specified using the composite
layer mechanism (11); i.e., it is activated when switch is
fired and Outdoors is activated. If events specified in from
and to clauses are the same, then this means that the activa-
tion happens from the first event until the second event.

Problem. Generally, there are required properties (con-
straints) between layers; e.g., some layers provide conflict-
ing behaviors, and thus they cannot be activated at the same
time; or, some layers provide behaviors that make sense only
if some other layers are activated. For example, Outdoors
and Indoors provide conflicting behaviors, and Satellite
is executable only when Outdoors is activated.
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Figure 4. Overview of our method

A problem arises when layers are activated in a way that
violates such constraints. A programmer may mistakenly
specify the faulty layer activation. For example, the above
constraints are violated if the programmer specifies the layer
activation as shown in Figure 3. We call a set of activated
layers that violates the constraints an invalid combination of
layers. The specifications in Figure 3 result in invalid com-
binations, e.g., {Indoors, Outdoors}, which cause unex-
pected behaviors like that the indoors behavior overrides the
outdoors one when the user is in the outdoor situation.

To eliminate the invalid combinations, a mechanism for
detecting them is required. Even though they can be detected
using runtime checking (7), it requires possibly a significant
amount of cost for testing.

3. Detecting Invalid Combinations
We propose a method to detect invalid combinations be-
tween layers that occur at runtime using static analysis. In
particular, we apply an analysis method for control-flows
with callbacks in Android applications (15) to detect invalid
combinations between layers.

Overview. Figure 4 summarizes our method. Our method
takes the source code of the ServalCJ program as an input,
as well as the constraints between layers provided by the
programmer. It constructs a CFG of the base program, and,
based on the layer activation specifications provided by the
contextgroup declarations, it calculates the set of nodes
in CFG on which the specified layer is activated, which
we call a layer activation coverage. By comparing each
layer activation coverage, our method decides whether the
constraints are satisfied.

Specifying constraints. Constraints in our method are
based on feature diagrams (13). A feature diagram repre-
sents a hierarchically arranged relations between features of
a particular domain; i.e., this is a tree where primitive fea-
tures are leaves and compound features are interior nodes.
Relationships between a parent feature and its child features
include mandatory (features that required), optional (fea-
tures that are optional), alternative (only one child feature

Figure 5. A feature diagram

can be selected), and so on. A feature diagram is a widely
adopted discipline to represent product’s commonality and
variability, and it is a handy way to represent the dependen-
cies between layers.

In our method, we represent constraints between lay-
ers using a feature diagram. Figure 5 shows an example.
The root feature “show map” is a domain that this diagram
characterizes. All layers are child features of particular do-
mains (or child features of some other layers). For example,
Indoors and Outdoors are child features of “show map”
and these are in the alternative relationship. Satellite is
a child feature of Outdoors and the former can be selected
only if the latter is selected, while the latter does not always
require that the former to be selected. These constraints are
written in the following textual format.

@alternative(Outdoors,Indoors)

@requires(Satellite->Outdoors)

Constructing CFG. The ServalCJ program is checked
against the constraints provided by the programmer by stat-
ically estimating activated layers for each statement of the
program. To perform such a check, a model representing all
the possible computations is necessary. A control-flow graph
(CFG) is one of such models where all possible control-
flows of the execution of the given program are represented,
and our method is based on the interprocedual CFG (ICFG),
where CFGs of the program’s procedures are combined.

At first, the traditional ICFG looks unsuitable for our
purpose. Traditional control-flow analysis is unsuitable for
framework-based and event-driven applications where the
application code and the framework interact through call-
backs, because there are no abstractions for handlers that
handle particular events. Context-aware applications (and
thus applications written in COP languages) are inherently
event-driven because they reactively respond to environmen-
tal changes, which are usually represented as events.

Instead of the traditional ICFG, we apply the callback
CFG (CCFG) (15) to address this issue. A CCFG is a variant
of CFG that captures the callback sequences in Android
applications. By analyzing the XML layout file equipped
with the Android application and relevant code, in CCFG,
event handlers are directly related to actions in the user code
that may trigger events handled by the event handlers.

Figure 6 shows a CCFG of the example program shown in
Figure 7. This graph shows sequences of lifecycle callbacks

3 2016/6/24



Figure 6. CCFG for the example program

class Map .. {

public void onClick(View v) {

switch(v) {

case nav:

../* Trantition to NavActivity */

case satellite:

../* Transition to Satellite */

}

} }

class NavActivity .. {

public void onCreate(..) {

checkStatus();

getPosition();

getPicture();

draw(); }

void checkStatus() {

if (..) { startOutdoors(); }

else if (..) { startIndoors(); }

} }

class Satellite .. {

public void onClick(..) {

switch();

../* Transition to NavActivity */

} }

Figure 7. An example base program. We note that
startOutdoors(), startIndoors(), and switch() are
not method invocations but event generations in ServalCJ.

(such as onCreate and onDestroy) and GUI event han-
dler callbacks (such as onClick), as well as CFGs within
each event handler. Branch nodes bi and join nodes ji in-
dicate that event handlers can be executed in any order. We
note that, in Figure 6, event generations in ServalCJ such as
startOutdoors, startIndoors, and switch are also rep-
resented as CCFG nodes.

Deciding layer activation coverage over CFG. A layer ac-
tivation coverage is calculated by first selecting nodes in
CCFG that activate and deactivate a particular layer. This
is simply performed by selecting nodes that match events

Procedure: DFS(nstart, nend)
Input: nstart (activation node), nend (deactivation node)
Output: R (all nodes visited from nstart to nend)

1: R← {nstart}
2: E ← set of outgoing edges from nstart

3: for all ei ∈ E do
4: n′ ← sink of ei

5: if n′ 6∈ R and n′ 6= nend then DFS(n′, nend)
6: end for

Figure 8. Layer activation coverage in CFG

specified in the from and to clauses in the activate dec-
larations for the corresponding layer. For example, in Fig-
ure 6, we found that Outdoors is activated in the node la-
beled startOutdoors and deactivated in the node labeled
startIndoors.

After selecting the layer (de)activation nodes, we ap-
ply a simple DFS algorithm from the activation node to
the deactivation node. This algorithm is shown in Fig-
ure 8. In short, it returns all nodes that may be visited
during the execution from nstart to nend. Note that, if there
are multiple activation and deactivation nodes, all possi-
ble combinations between them are considered. For exam-
ple, the layer activation coverage of Outdoors in Figure 6
results in startOutdoors, getPosition, getPicture,
draw, onCreate (in NavActivity), b2, j2, onDestroy (in
NavActivity), j1, b1, onClick (in Satellite), switch
(in Satellite), onClick (in Map), and checkStatus (note
that nend is not included in the result).

The above algorithm explains the case where an event-
based activation is used. We note that this algorithm is also
applied to the control-flow-based activation (e.g., cflow in
ServalCJ and with in ContextJ (1)). Actually, in our method,
the control-flow-based activation is considered as a special
case of the event-based activation where the activation and
deactivation nodes are the same.

Checking invalid combinations. Based on the layer acti-
vation coverage, we check that the constraints provided by
the programmer are satisfied. We provide the different algo-
rithms for checking two kinds of constraints: alternative
and requires.

The algorithm for alternative is shown in Figure 9.
We write the set of all activation nodes of layer A as
NA start, and the set of all deactivation nodes of layer A
as NA end. When DFS is applied to sets S and T , it is inter-
preted as DFS(S, T ) =

⋃
si∈S,tj∈T DFS(si, tj). Intuitively,

checkAlternative(A, B) checks that no activation nodes of
B are contained in the layer activation coverage of A, and
no activation nodes of A are contained in the layer activation
coverage of B.

For example, checkAlternative(Outdoors, Indoors) re-
turns true if layer activations are specified as Figure 2,
but returns false if these are specified as Figure 3 be-
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Procedure: checkAlternative(A, B)
Input: A (layer), B (layer)
Output: true if A and B satisfy the alternative constraint; false
otherwise

1: RA ← DFS(NA start, NA end)
2: RB ← DFS(NB start, NB end)
3: for all Ri ∈ RA do
4: for all n ∈ Ri do
5: if n ∈ NB start then return false

6: end for
7: end for
8: for all Ri ∈ RB do
9: for all n ∈ Ri do

10: if n ∈ NA start then return false

11: end for
12: end for
13: return true

Figure 9. Checking alternative constraint

cause the layer activation coverage of Indoors contains
startOutdoors, which is the activation node of Outdoors.

We omit the algorithm checking the requires relation in
this paper because it is very simple: it simply checks whether
the layer activation coverage of the requiring layer is a subset
of the coverage of the required layer.

Limitations. There are limitations to our method. First,
our method assumes Android applications and other plat-
forms are considered beyond the scope, because the CCFG
construction mechanism is specialized to Android applica-
tions. Further research on constructing sequences of call-
backs for other platforms (this construction inherently re-
quires platform specific knowledge) would broaden the ap-
plicability of our method. Nevertheless, we consider that An-
droid would be one of the major platforms for COP applica-
tions, and our method provides a good solution for statically
detecting invalid combinations between layers that may oc-
cur at runtime. Second, our method assumes that all layer
(de)activation nodes exist in the base program. To analyze
the case where layer (de)activation occurs in the execution
of some layer, a CFG construction mechanism that considers
layers is necessary, which remains as future work. Third, our
method focuses on event-based COP as well as control-flow-
based one, and other activation mechanisms such as using
conditionals are considered beyond the scope of this paper.

4. Preliminary results
We show how our method finds invalid layer combinations
using the pedestrian navigation example. We prepared four
cases based on the program shown in Figure 7; two were
correct and the other two contained faults. Those cases are
summarized as follows.

Case 1: Layer activation is specified as shown in Fig-
ure 2, where the alternative requirement between
Outdoors and Indoors is satisfied.

Case 2: Layer activation is specified as shown in Figure 3,
which violates the alternative requirement between
Outdoors and Indoors.

Case 3: The same as the case 2, which also violates the
requires requirement between Outdoors and Satellite.

Case 4: The activation of Satellite is specified as shown
in Figure 3. A conditional branch is inserted before
generating the switch event in Figure 7 to satisfy the
requires requirement between Outdoors and Satellite.

We checked cases 1 and 2 against the property @alter-
native(Outdoors,Indoors) and cases 3 and 4 against the
property @requires(Satellite->Outdoors). In cases 2
and 3, our method effectively found the violations of the re-
quirements. In case 1, our method did not find any require-
ment violations, which was also an expected result. How-
ever, in case 4, our method reported a requirement viola-
tion, even though this case did not violate the requirement.
This is because our method conservatively draws edges for
both following statements from one conditional branch in
CFG without considering the actual values in the condition.
This result implies that our method may not work correctly
if conditions for layer activations are hardwired within the
base program. This problem would be addressed by provid-
ing more advanced analyses for CFG construction (e.g., con-
stant propagation or symbolic evaluation of conditionals), or
simply refactoring the program to separately specify the con-
ditionals in the contextgroup (e.g., the isActive specifi-
cation in Figure 2 immediately leads to the satisfaction of
the requires requirement).

5. Related work
There are several research efforts that use feature diagrams
for COP applications. Costanza et al. proposed a method to
analyze the dependency between layers using feature dia-
grams (5). As in our method, each feature corresponds to
a layer. They also propose an extension of ContextL (6)
with composite layers (that correspond to composite fea-
tures), which provides layer composition operators that are
as expressive as compositions in feature diagrams and an
implicit layer activation mechanism based on those opera-
tors. Cardozo et al. proposed the feature clouds program-
ming model (4), which also equates layers (i.e., “behavioral
adaptations”) to features in feature-oriented software devel-
opment. This model clarifies correspondence between fea-
tures and COP and advances the feature model by introduc-
ing dynamic adaptation of features by means of COP mech-
anisms. Our method complements those efforts by providing
the static analysis to ensure the required properties defined
between layers.

EventCJ (10) is a COP language that provides an event-
based layer activation mechanism. For static analysis, it can
generate a state transition specification from the program
that can be checked by the model checker SPIN (9). Based
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on SPIN, we can use linear temporal logic formula, where
we can specify temporal properties that cannot be repre-
sented in the feature diagrams, to specify the required prop-
erties between layers. However, in EventCJ, the model of
event generation is specified by the programmer, and the
preciseness of the model is undertaken by the programmer.
Instead, our method automatically determines the event gen-
erations from the CFG.

Some approaches also address the invalid layer combi-
nations problem by allowing the declaration of dependen-
cies between layers. Such approaches detect invalid layer
combinations dynamically (2; 7). One notable exception is a
Petri-net based formalism for context-oriented systems (3),
where such combinations can be detected statically as well
as dynamically. This formal model is used to reason about
contexts and their interactions at design time. Instead, our
method is applied at implementation time to analyze the
source code to detect invalid layer combinations.

6. Concluding remarks and future work
This paper has proposed a method to detect invalid combi-
nations between layers using static analysis. Using the state-
of-the-art control-flow analysis for Android applications, it
has been shown that the effective callback sequences in An-
droid applications including events that activate and deacti-
vate layers can be constructed, and our method can find the
invalid combinations between layers using this analysis ef-
fectively. The preliminary study also revealed that there was
a false positive that occurred when a condition for the layer
activation are hardwired within the base program, and this
case implies that the program should be refactored. Even
though this work is still in its early stage, we believe that
using CFG for Android applications to analyze layer activa-
tions is a promising approach.

There are a couple of research directions for future work.
First, we are planning to refine our method to provide more
precise analysis. One possible method is to develop a more
precise estimation of the layer activation coverage. For ex-
ample, instead of simple DFS, applying more precise anal-
yses such as constant propagation and symbolic execution
would produce more effective results. Another possible
method to enhance the preciseness of analysis is to develop
a layer activation aware CFG construction mechanism.

Another future research direction is enhancing the ex-
pressiveness of the constraint specifications. Currently our
method supports only two specification constructs, namely,
alternative and requires. It will be convenient if our
method can support other dependencies such as implica-
tion or other dependencies that have been proposed by other
method (7). Even though some of them may be represented
by combining alternative and requires, it is interesting
to explore new analyses on CCFG to represent more expres-
sive dependencies that are not covered by those two.
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Van Der Straeten, Jorge Vallejos, and Theo D’Hondt. Seman-
tics for consistent activation in context-oriented systems. In-
formation and Software Technology, 58:71–94, 2015.

[4] Nicolás Cardozo, Wolfgang De Meuter, Kim Mens, and Se-
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