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ABSTRACT
Current trend of seamless connections between computing sys-

tems and their surrounding environments requires software to be

more reactive and adaptable, and reactive programming (RP) and

context-oriented programming (COP) have been studied to directly

support reactive behavior and dynamic adaptation. Sometimes re-

active behavior and dynamic adaptation interact with each other.

One issue of such interactions is how to avoid a loop of reactive

behavior and dynamic adaptation when there are mutually recur-

sive dependencies between them. This paper proposes TinyCORP,

a core calculus for context-oriented reactive programming that is

designed in a main-stream, general-purpose language setting. This

calculus is expressive enough to represent both features of signals

(i.e., time-varying values in RP) and layer-based partial methods

in COP, and their interactions including the ability to specify the

mutually recursive dependencies between dynamic adaptation and

reactive behavior. We also demonstrate that the computation in

TinyCORP do not result in the loop of reactive behavior and dy-

namic adaptation.

CCS CONCEPTS
• Theory of computation → Program constructs; Operational
semantics.
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1 INTRODUCTION
Current trend of seamless connections between computing systems

and their surrounding environments requires software to be more

reactive and adaptable, and intensive research efforts to provide ap-

propriate programming language abstractions have been performed.

Reactive programming (RP) makes data dependencies and reactive
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behaviors explicit, and context-oriented programming (COP) mod-

uarizes context-dependent behaviors that are adaptable at runtime.

There have been lots of RP languages [7, 10, 17, 24, 25, 28] and COP

languages [3, 8, 11, 18, 20, 23].

Sometimes reactive behaviors and context-dependent behaviors

interact with each other. For example, dynamic adaptation, also

known as layer activation in COP, can be considered as an effect of

reactive behaviors, and thus languagemechanisms for reactive layer

activation have been proposed [15, 21]. Similarly, reactive behaviors

can be context-dependent, and a COP extension to a functional-

reactive programming (FRP) language has been proposed [29].

One issue of interactions between RP and COP constructs is

cycles of such interactions. The above mentioned research efforts

indicate that layer activation itself is a time-varying value, and this

time-varying value may change the definition of reactive behavior

that changes layer activation. This cycle of dependency will make

the program stuck in a loop of layer activation and reactive behavior.

This issue was discussed and addressed in a COP extension of

tiny FRP language mentioned above [29]. This language, Emfrp [26],

is designed for small-scale embedded systems, and adopts the timer-

based synchronous execution model. The COP extension to Emfrp

supports layer activation based on conditions; i.e., when the con-

dition is true, the specified layer is activated. This condition is

a time-varying value. To avoid the loop of layer activation and

reactive behavior, we cannot use the current values (i.e., values

determined in the current time). Instead, each time-varying value

used in the condition implicitly refers to the value computed in the

previous time.

This paper discusses this issue in a more generalized setting.

As mentioned above, there is a variety of work in RP and COP

languages, and most of them are proposed as their extension to

main-stream programming languages, which do not based on the

timer-based execution model. Furthermore, in the COP extension

to Emfrp, interactions between COP and RP are not fully discussed;

e.g., most COP languages provide partial methods, which are not

supported by Emfrp. These issues still obscures how RP and COP

can naturally interact with each other.

In this paper, we propose TinyCORP, a core calculus for context-

oriented reactive programming in a main-stream general-purpose

language setting. This is designed as an extension to Featherweight

Java (FJ) [14], meaning that the dynamic semantics are not timer-

based but specified on the basis of beta reduction. TinyCORP sup-

ports RP features in that all fields are signals (i.e., time-varying

values). It also supports COP features in that layers and partial

methods are supported as in ContextFJ [12]. The notable features

https://doi.org/10.1145/3340671.3343356
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class Car {

signal int p = ... // proportional gain

signal int sum = p.sum(); // integral gain

// setting the gear, the default is 'parking'

signal int motor = powerDiff(p,sum);

signal int tilt = ... //tilt sensor

signal boolean running = false;

signal boolean second = isHigh(tilt, motor);

}

Figure 1: Autonomous vehicle using SignalJ

are (1) fields (signals) are also layer-dependent, and (2) layer ac-

tivation depends on signals. Thus, we can express the mutual de-

pendency between signals and layer activation. Nevertheless, the

operational semantics are specified not to result in a loop between

layer activation and signal evaluations.

The rest of this paper is structured as follows. Section 2 motivates

us to develop an RP language model that also supports COP features.

Section 3 formalizes that language model as a calculus TinyCORP.

Section 4 discusses related work. Finally, Section 5 concludes this

paper.

2 CONTEXT-ORIENTED REACTIVE
PROGRAMMING

This section revisits the COP and RP mechanisms and describes

our motivation.

2.1 Signals
We consider an autonomous vehicle that changes its gear using

automotive tilt sensors. In this example, the control of the vehicle is

implemented in a class, namely, Car, using SignalJ, a Java extension
that supports signals [17]. The declaration of this class is shown

in Figure 1. In this class, every field is declared as a signal, as in-

dicated by the modifier signal. This means that every field is a

time-varying value; i.e., if some value in the right-hand side of the

declaration is updated, the value of the left-hand side is automat-

ically recalculated. In this example, signals p, tilt, and running
do not depend on any other signals. We refer to such a signal as

a source signal. Other signal declarations refer to other signal in

their right-hand side. We refer to such a signal as a composite signal.
If some source signal (e.g., p) is updated, composite signals that

depends on that (e.g., sum, motor, and second) are automatically

updated.

These signals in Car describes the behavior of the vehicle. For
example, we assume that the value of p is periodically updated.

This update is propagated to signals that depend on p; thus, the
values of sum and motor are also updated accordingly. Similarly,

the updates of tilt and motor are propagated to second, which
will be used to change its gear.

layer NormalRunning {

class Car {

int powerDiff(int p, int sum) {

.. // behavior of the drive gear

} } }

layer HillRunning {

class Car {

int powerDiff(int p, int sum) {

.. // behavior of the second gear

} } }

Figure 2: Context-dependent behavior for the vehicle

contextgroup CarContext (Car c) {

activate HillRunning if(c.running && c.second);

activate NormalRunning if(c.running && !c.second);

}

Figure 3: Layer activation using signals

2.2 Layer-Based COP
COP provides a modularization mechanism to implement related

context-dependent behavior (that crosscuts several existing classes)

into a single module. This module, called a layer, can be dynami-

cally composed (activated) and decomposed (deactivated) with the

application. Each layer consists of a set of partial methods, which
change the behavior of the original (base) methods in classes when

the specified layer is activated.

For example, in the autonomous vehicle example, we identify

two contexts, namely, running on a normal road and running on a

steep road, and we have two layers, namely, NormalRunning and
HillRunning, respectively, to implement behaviors that depend on

those contexts (Figure 2). These layers implement their own behav-

ior using the partial method powerDiff that override the original
definition in Car (not shown in Figure 1) when the corresponding

layer is activated. A partial method can also invoke the overridden

behavior using proceed, which is similar to super that calls the

method overridden by the class calling super.

2.3 Reactive Layer Activation
One issue in COP is how to specify the layer activation, and our

previous work proposed layer activation based on signals [21]. This

is described in Figure 3, which declares activation of HillRunning
and NormalRunning using conditional expressions (enclosed in if).
The construct contextgroup declares a set of related layer activa-

tion in that they specify layer activation for some specified group

of object referring to the same instance c of Car. As c.running
and c.second are signals, their changes are propagated to layer

activation. For example, when c.second becomes true while the
car is running, HillRunning is activated and NormalRunning is

deactivated.
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2.4 Context-Dependent Signals
Watanabe proposed a context-oriented FRP language where the def-

inition of the signal changes according to the activated layers [29].

We integrate this feature in our example, to make it possible to

rewrite layers in Figure 2 as follows:

layer NormalRunning {

class Car { signal int motor = drive(p,sum); }

}

layer HillRunning {

class Car { signal int motor = second(p,sum); }

}

In this example, methods drive and second implement the be-

havior of the drive gear and that of the second gear, respectively.

Instead of using partial methods, those layer definitions “switch”

the definition of the signal motor according to the activated layer.

This example indicates that allowing signals change their definition

makes the intention of the program clearer.

2.5 Mutual Recursive Dependency between
Layers and Signals

So far, we have discussed the integration of COP and RP in two

directions: making layer activation reactive and making reactive

behavior context-dependent. If those features co-exist in the same

language, we encounter the mutual recursive dependency between

layer activation and signals.

Our example actually describes this case. The signal second
depends on motor, and motor is layer-dependent. The layer activa-

tion uses the signal second. Thus, there is a cycle of dependencies
among them. In general, such a cycle results in a loop of signal

update propagations, which makes the program stuck.

This problem can be addressed if layer activation is performed

after the evaluation of signals. In other words, if the layer activation
is determined using the previous values of the signals, this loop of

propagations does not occur. This was first discussed by Watanabe

in the implementation of the context-oriented FRP language intro-

duced above [29]. As this language is based on the timer-based FRP,

it is obvious that what is the previous value. On the other hand, the

language discussed in this section is based on a mainstream general-

purpose language whose semantics is not provided as timer-based.

Thus, our challenge is to discuss the integration of COP and RP in

a more generalized setting.

3 CORE CALCULUS
To explain the language mechanisms explained in Section 2, we

propose TinyCORP, a core calculus for context-oriented reactive

programming. We desire that the calculus has the following fea-

tures. First, the calculus must be able to explain both COP and

RP features and their combinations, in particular partial methods,

signals, reactive layer activation, and context-dependent signals.

Second, the studied mechanisms should easily be integrated with

the mainstream languages; i.e., it is desirable that the calculus is

designed as a core of some mainstream language. Meanwhile, to

make the study focused, the calculus should be as minimum as

possible, and irrelevant features should be abstracted away. Finally,

CL ::= class C ◁ C { T s=e; T f; K M }

K ::= C(T x, T y) { super(y); this.f=x; }

M ::= T m(T x) { e }
e ::= x | e.f | e.m(e) | new C(e) | e.f = e | e; e | ϵ |

ℓ | true | false | proceed(e) | v<C,L,L>.m(v)
v ::= ℓ

T ::= C | boolean | void

lm ::= · | e ? L; lm

Figure 4: TinyCORP: Abstract Syntax

the calculus must have a fundamental property that it does not

stuck in the loop of reactive behavior that changes itself.

To stick on the mainstream, basically it is designed as an exten-

sion of FJ [14]. The COP features are supported applying the same

manner of ContextFJ [12], and the SignalJ-based RP feature [17] is

superimposed on that. We found that the resulting calculus is fairly

simple but as expressive as possible to explain the aforementioned

language mechanisms.

3.1 Syntax
The abstract syntax of TinyCORP is shown in Figure 4. Let the

metavariables C, D, and E range over class names; L range over

layer names; f and g range over source signals; s ranges over com-

posite signals; m ranges over method names; d and e range over

expressions; T ranges over types; v ranges over values; and x ranges
over variables that include this. Overlines denote sequences, e.g.,

f stands for a possibly empty sequence f1, · · · , fn . An empty se-

quence is denoted by ·. We also use “this.f=x;” as shorthand for

“this.f1=x1;· · · ;this.fn=xn;” where n denotes the length of f.
Similar shorthand is applied throughout the syntax.

A class declaration consists of composite signal declarations,

source signal declarations, a constructor declaration, and method

declarations. Both composite and source signals are declared as

fields, and all fields that have their initializers are composite signals.

A constructor initializes the source signals. An expression can be

either a variable, a field access, a method invocation, a constructor

invocation, a field assignment, a concatenation, a location ℓ, an

empty expression ϵ , a boolean expression such as true and false,
a proceed call, or a runtime expression v<C,L,L>.m(v), meaning

that m is going to be invoked on value v. A value v is actually a

location that points to an object. We use the metavariable v for

our convenience. A type can be either a class name, a boolean

type boolean, or a unit type void, which is the type of the empty

expression.

To represent the COP-specific features, the calculus also pro-

vides a syntax for the layer manager lm, which corresponds to the

contextgroup declaration shown in Figure 3. This is modeled as

a list of layer activation rules. Each layer activation rule is of the

form e ? L, meaning that if e is true, all layers L are activated. As in
ContextFJ, the calculus does not provide syntax for layers. Instead,

partial methods are registered in the partial method table PT that

maps a triple C, L, and m of class, layer, and method to a partial

method definition. Similarly, layer-dependent signals are registered

in the signal table ST that maps a triple C, L, and s of class, layer,
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and (composite) signal to the layer-dependent definition of the sig-

nal. The calculus also provides the class table CT that maps a class

name C to the class definition.

There is one issue regarding the construction of the layer man-

ager lm, which contains boolean expressions to judge layer activa-

tion. This construction requires dynamically changing the state of

the layer manager, which makes computations complex unneces-

sarily. To keep the computation rules simple, we assume that the

program execution consists of the following three phases, and our

calculus only formalizes the final phase:

(1) Construction of the objects that do not depend on lm.

(2) Construction of lm.

(3) Execution of the program that depends on lm. Note that this

phase does not reconstruct lm.

A TinyCORP program (CT , PT , ST , lm, µ, e) consists of a class
table CT , a partial method table PT , a signal table ST , a layer man-

ager lm, an object store µ that maps a location to an object, and an

expression e that corresponds to the body of the main method. We

also assume the following conditions:

(1) CT (C) = class C · · · for any C ∈ dom(CT ), and no cycles

exist in the transitive closure of ◁ (extends).
(2) PT (m, C, L) = · · · m(· · · ) {· · · } for any (m, C, L) ∈ dom(PT ),

and C, C0 = D, D0 if PT (m, C, L1) = C0 m(C x) {· · · } and

PT (m, C, L2) = D0 m(D y) {· · · } for all m and C (i.e., there is

no conflict between partial methods).

(3) ST (s, C, L) = e for any (s, C, L) ∈ domST .
(4) All locations that appear in lm also appear in dom(µ ).
(5) Field hiding and method overloading are not allowed, and

all fields in the same class and all parameters in the same

method are distinct.

3.2 Computation
The operational semantics of TinyCORP, which is shown in Figure 5,

is given by a reduction relation of the form e | µ | L −→ e | µ ′ | L,
which is read as “expression e under object store µ and activated

layers L reduces to e′ under µ ′ and L
′
.”

3.2.1 Pull-based signal evaluation. The pull-based behavior of sig-

nals is explained by the rule R-CField, which defines the field access

where the accessed field is a composite signal. The composite signal

s is initialized with an expression e0, which is eventually evaluated

(after layer (de)activation explained below) every time the field is

accessed. Thus, this ensures the immediate propagation of a change

in the source signal, which is defined by R-Assign. We use ⊎ as a

relational override of the object store; that is, (x ⊎ y) (k ) = y (k ) if
k ∈ dom(y) or x (k ) otherwise. R-Assign ensures that each source

signal is updated when the field assignment is performed, and the

value of a composite signal is always computed using the up-to-

date source signal values. As an assignment reduces to an empty

expression, it is assumed to be followed by a concatenation (as

shown by R-Cat).

3.2.2 Context-dependent behavior. FollowingContextFJ, TinyCORP
formalizes context-dependent behavior. First, it provides computa-

tion rules for partial methods, which are mostly identical to Con-

textFJ. Rule R-Invk defines the method invocation where the “cur-

sor”, indicating where method lookup should start among the class

e | µ | L −→ e′ | µ ′ | L
′

µ (ℓ) = new C(v) activeLayers(lm, µ, L) = L
′

ℓ.fi | µ | L −→ vi | µ | L
′

(R-Field)

µ (ℓ) = new C(v) fdecl (s, C, L′) = e0
activeLayers(lm, µ, L) = L

′

ℓ.s | µ | L −→ e0 | µ | L
′ (R-CField)

µ (ℓ) = new C(w) activeLayers(lm, µ, L) = L
′

ℓ.m(v) | µ | L −→ ℓ<C,L
′
,L
′
>.m(v) | µ | L

′

(R-Invk)

mbody (m, C, L′′, L′) = x.e in C′, ·

ℓ<C,L
′′
,L
′
>.m(v) | µ | L −→

[
ℓ/this
v/x

]
e | µ | L

(R-InvkB)

mbody (m, C, L′′, L′) = x.e in C′, (L
′′′
; L0)

ℓ<C,L
′′
,L
′
>.m(v) | µ | L −→



ℓ /this
v /x

ℓ<C′,L
′′′
,L
′
>.m/proceed


e | µ | L

(R-InvkP)

ℓ < µ

new C(v) | µ | L −→ ℓ | µ ∪ {ℓ 7→ new C(v)} | L
(R-New)

µ (ℓ) = new C(v) #(v) = n

ℓ.fi = v0 | µ | L −→

ϵ | µ ⊎ {ℓ 7→ new C (v1,· · · ,vi−1,v0,vi+1,· · · ,vn) | L
(R-Assign)

ϵ; e | µ | L −→ e | µ | L (R-Cat)

Figure 5: TinyCORP: Computation

hierarchy and currently activated layers, has not been initialized.

This cursor is set as the receiver’s class and the sequence of ac-

tivated layers computed by activeLayers, which will be explained

shortly. Two rules, R-InvkB and R-InvkP, represent invocations of

a base method and a partial method, respectively. Both rules use the

auxiliary functionmbody, which is defined in Figure 6 and searches

the method body in the order specified by ContextFJ. R-InvkP ad-

dresses the case where the method body is found in layer L0 in class

C′. In this case, proceed in the method body is replaced with the

invocation of the same method, where the receiver’s cursor points

to the next layers L
′′′
.

The context-dependent behavior originally introduced by Tiny-

CORP is context-dependent signals, which are defined by R-CField.

The signal expression e0 is obtained using fdecl defined in Figure 6.
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fdecl (s, C, L) = e

CT (C) = class C ◁ D { · · · T s=e; · · · }

fdecl (s, C, ·) = e

CT (C) = class C ◁ D { T s=e · · · } s < s

fdecl (s, C, ·) = fdecl (s, D, ·)

ST (s, C, L) = e

fdecl (s, C, L; L) = e

ST (s, C, L) undefined fdecl (s, C, L) = e

fdecl (s, C, L; L) = e

mbody (m, C, L′, L) = x.e in D, L
′′

CT (C) = class C ◁ D { · · · T m(T x) { e } · · · }

mbody (m, C, ·, L) = x.e in C, ·

CT (C) = class C ◁ D { · · · M } m < M

mbody (m, D, L, L) = x.e in E, L
′

mbody (m, C, ·, L) = x.e in E, L
′

PT (m, C, L0) = C0 m(C x) { return e; }

mbody (m, C, (L′; L0), L) = x.e in C, (L
′
; L0)

PT (m, C, L0) undefined mbody (m, C, L′, L) = x.e in D, L
′′

mbody (m, C, (L′; L0), L) = x.e in D, L
′′

Figure 6: Field and method access

L, µ ⊢ e −→ e′

µ (ℓ) = new C(v)

L, µ ⊢ ℓ.fi −→ vi
(R-FieldF)

µ (ℓ) = new C(v) fdecl (f, C, L) = e0

L, µ ⊢ ℓ.f −→ e0
(R-CFieldF)

µ (ℓ) = new C(w) ℓ<C,L,L>.m(v) | µ | L −→ e0 | µ | L

L, µ ⊢ ℓ.m(v) −→ e0
(R-InvkF)

Figure 7: TinyCORP: Computation with fixed layers

This function searches the signal expression from the class hier-

archy and the sequence of activated layers in the order similar to

mbody. Thus, how the signal s behaves depends on the currently

activated layers L
′
.

L, µ ⊢ e −→∗ true

activeLayers(e?L0; lm, µ, L) = L0, activeLayers(lm, µ, L)

L, µ ⊢ e −→∗ false

activeLayers(e?L0; lm, µ, L) = activeLayers(lm, µ, L)

activeLayers(·, µ, L) = ·

Figure 8: Judging activated layers

3.2.3 Judging activated layers. Layer activation is determined by

signals in TinyCORP, and the issue is when to determine which

layer is activated. One approach could be determining the timing

when the state (i.e., µ) is updated. This can be formalized using

the event handler mechanism similar to SignalJ. However, to keep

the calculus simple, we take another approach, where the layer

activation is determined just before the context-dependent behav-

ior is executed. In our case, context-dependent behavior includes

signal evaluation (via field access) and method invocation. Thus,

R-Field, R-CField, and R-Invk include the judgment of activated

layers, which is determined using activeLayers, in their premises.

We note that we take the strategy of layer activation where the

layer activation does not change during the execution of partial

methods; i.e., as explained by R-InvkB and R-InvkP, the judgment

using activeLayers does not appear in their premises. This strategy

is also adopted by most COP languages.

The function activeLayers returns layers L that should be acti-

vated, and this judgment is performed using the boolean expressions

in lm. As this judgment might be explained using the aforemen-

tioned computation rules, at first the definition of activeLayers
seems to be formulated as follows:

e | µ | L −→∗ true | µ | L
′

activeLayers(e?L0; lm, µ, L) = L0, activeLayers(lm, µ, L
′
)

e | µ | L −→∗ false | µ | L
′

activeLayers(e?L0; lm, µ, L) = activeLayers(lm, µ, L′)

activeLayers(·, µ, L) = ·

Actually, this definition does not work, as the premise of each rule

may further call activeLayers, resulting in a loop of reactive layer

activation. This implies that, during the execution of activeLayers,
any other layer activation must not be handled, and the evaluation

of each boolean expression in lm must be performed under the

fixed active layers.

For this purpose, we provide computation rules other than the

ones in Figure 5. Those are shown in Figure 7. Those rules are given

by a reduction relation of the form L, µ ⊢ e −→ e′, which is read

as “under the fixed activated layers L and object store µ, expres-
sion e reduces to e ′.” We note that boolean expressions in lm are

constructed without using side-effective expressions such as object
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construction and assignment
1
. Thus, computation rules in Figure 7

consists of only field access (R-FieldF and R-CFieldF) and method

invocation (R-InvkF). The field access rules are straightforward; the

difference from rules in Figure 5 is that they do not call activeLayers
in their premises. The rule R-InvkF indicates that if the method

body e0 is found by searching from ℓ.m(v) without activating any

layers, then ℓ.m(v) is reduced to e0. We note that ℓ<C,L,L>.m(v)
is reduced to e0 in a single step (if mbody succeeds) by applying

R-InvkB or R-InvkP, which do not trigger any layer activation.

Using this reduction relation, activeLayers is defined as shown

in Figure 8. It checks each boolean expression e in lm, and adds

the corresponding layer L0 to the return value only if e reduces to

true under L and µ.

3.2.4 Congruence rule. Finally, we show the straightforward con-

gruence rule that enables a reduction of subexpressions. We first

introduce the evaluation context E as follows:

E ::= [].f | [].m(e) | ℓ.m(ℓ,[],e) | new C(ℓ,[],e) |
[].f = e | ℓ.f = [] | []; e

Each evaluation context is an expression with a hole (written [])

somewhere inside it. We write E[e] for an expression obtained by

replacing the hole in E with e.
The congruence rule is defined as follows:

e | µ | L −→ e′ | µ ′ | L
′

E[e] | µ | L −→ E[e′] | µ ′ | L
′

The evaluation context defines the evaluation order of arguments

to method and constructor invocations, and ensures that the re-

duction of the right-hand side of ; occurs after the left-hand side

reduces to an empty value.

3.2.5 Expected properties. To state the desired progress property,

we need to provide a type system, which should be almost identical

to that of ContextFJ [12]. Instead of repeating the definitions of type

system, in this paper, we informally discuss how the progress prop-

erty is defined in TinyCORP. First, we need to define the progress

property of the reduction that appear in premises of activeLayers,
as activeLayers must return some sequence of layers to make the

calculus have the progress property. This can be informally stated

as that a well-typed conditional expression e in lm reduces to an-

other expression e ′, or either true or false. This should be easily

proven if we assume a ContextFJ-like type system.We note that this

property holds even when there is a cyclic dependency between

layer activation rules and layer-dependent signals.

Having this progress property of conditional expressions in lm,

we can state the progress property of TinyCORP as follows. If

every e in lm eventually reduces to true or false, well-typed
TinyCORP expression e0 reduces to another expression e ′

0
, or it

is a normal form. This can be easily shown that if every e in lm

eventually reduces to a boolean value, activeLayers always return
some sequence of layers. It should be noted that activeLayers will
not return if there is an infinite loop that is explicitly written (e.g.,

recursive calls that will not stop) in the evaluation of the conditional

expressions.

1
This restriction is consistent with other reactive layer activation mechanisms such as

that found in Emfrp [29].

Definitions:

CT : C 7→ class C {
boolean s1 = true;
boolean m() { return true; } }

PT : (m, C, L1) 7→ boolean m() { return this.s1; }
ST : (s1, C, L1) 7→ false
lm: ℓ.s1?L1
µ: ℓ 7→ new C()

Computation:

·, µ ⊢ ℓ.s1 −→ true
activeLayers(lm, µ, ·) = L1

ℓ.m() | µ | · −→(R-Invk) ℓ<C,L1,L1>.m() | µ | L1
−→(R-InvkP) ℓ.s1 | µ | L1
−→(R-CField) false | µ | ·

Figure 9: Example execution with mutually dependent sig-
nal and layer activation

3.2.6 Example. Instead of providing proofs, we demonstrate how

TinyCORP computation proceeds under the existence of mutual

dependency between signals and layer activation in Figure 9. In this

example, CT contains class C, which declares signal s1 and method

m. Those signal and method are overridden by layer L1 as indicated

by PT and ST . The layer manager lm uses s1 for the activation of

L1; thus, the definition of s1 and the activation of L1 are mutually

dependent. The object store µ is initialized to contain the instance

of C.
Under these definitions, the evaluation of ℓ.m() starts by apply-

ing R-Invk. This rule uses activeLayers to judge the layer activation.
Without any activated layers, the condition ℓ.s1 reduces to true,
and thus L1 is activated. Then, the method lookup starts with the

activated layer L1, and the body of the partial method is found

(R-InvkP). Finally, this body reduces to the layer-dependent value,

which is false, and the layer L1 is deactivated according to lm.

4 RELATEDWORK
There are several research efforts on formalization of both COP

and RP. This section introduces those pieces of work, and discusses

how TinyCORP is different from them.

Several COP calculi discuss the way of layer activation. Firstly

proposed COP calculi formalized their core languages with synchro-

nous layer activation (also called with-blocks) [6, 12]. After that,
other layer activation mechanisms were also formalized. Examples

are event-based layer activation [1], layer activation that depends

on other layer activation (also known as composite layers) [19], uni-

fied layer activation [2], and generalized layer activation [20]. From

this perspective, TinyCORP formalizes layer activation based on

signals, but actually it also provides more: formalization of signals

that are layer-dependent.

Other research direction discusses the type system of COP, which

becomes an interesting issue if we consider layer-introduced base

methods [13]. For example, JCop [4], a Java-based COP language,

allows a layer introduce new methods and other layer can im-

port them, and its type system is known to be unsafe and a type
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safe alternative was proposed [16]. A safe type system for layer-

introduced base methods with asynchronous layer deactivation was

also proposed [22]. In this paper we do not discuss a type system for

TinyCORP, as it will not be interesting because TinyCORP does not

provide layer-introduced base methods. We consider that the idea

of safe type system for layer-introduced base methods with asyn-

chronous layer deactivation [22] can also be applied to TinyCORP

if we extend it with layer-introduced base methods.

The study of FRP originated with Elliott and Hudak [10], who fo-

cused on time-varying values in functional programs. RT-FRP [27]

is a statically typed language that deals with the use of FRP in

real-time applications and identifies a subset of FRP where it can

statically guarantee that the time and space costs for a given pro-

gram are statically bounded. E-FRP [28] further simplifies this idea

by generalizing the global clock used in RT-FRP to a set of events.

The push-pull FRP [9] determines the evaluation strategy for the

efficient implementation to combine both benefits. Those pieces of

work are based on functional programming, and their purpose is to

enhance their efficiency in resource usage, or to provide an efficient

implementation. On the other hand, TinyCORP is based on object-

oriented programming, and its purpose is to study its unification

with other programming paradigm. The design of RP mechanism in

TinyCORP is basically taken from SignalJ [17], which combines the

imperative event mechanism with signals where the push and pull

strategies are also combined. However, TinyCORP only provides

the pull strategy for signals to keep the calculus simple. Instead,

it provides fundamental features of COP and the other interesting

features of reactive layer activation and layer-dependent signals.

The combination between RP and COP is not new. Inoue and

Igarashi proposed layer activation using reactive values [15], and

effective layer activation with push-based evaluation was also

proposed [21]. On the other hand, Watanabe proposed context-

dependent signals [29], which is a COP extension of their FRP

language, Emfrp, designed for small-scale embedded systems [26].

The discussion regarding how to avoid the loop of layer activa-

tion was also discussed in that paper. The approach is basically

the same as the one proposed in this paper; i.e., layer activation is

judged using the values computed in the previous time (Emfrp is

a timer-based FRP language). TinyCORP discusses this issue in a

more generalized setting. Its target is a mainstream general-purpose

language where the execution is not timer-based. Thus, TinyCORP

provides its semantics based on beta-reduction.

5 CONCLUSION
We proposed TinyCORP, a core calculus for context-oriented re-

active programming. This calculus supports both features of COP

and RP such as partial methods with proceed and pull-based signal
evaluation. This calculus also provides interactions between them

such as layer activation that is based on signals, and signals that

depend on layer activation. By providing two kinds of reduction

rules, our calculus avoids the update propagation loop even when

there is a mutual dependency between signals and layer activation.

We note that there are still remaining issues. One future research

direction that worth discussing is interaction between TinyCORP

with other COP features. For example, some COP calculi allows lay-

ers introduce new methods, which can be imported by other layers

using requires. Similarly, we may also consider layer-introduced

signals. To extend TinyCORP with those features, we need to de-

velop a type system that ensures calls of layer-introduced basemeth-

ods and accesses to layer-introduced signals never fail. Another

possible research direction is extending the RP mechanism. For ex-

ample, in TinyCORP, source signals can appear only in classes; i.e.,

layers cannot override them. If layers can override source signals,

updates of source signals become layer-dependent. This means that

layers have their own state, which is similar to the interruptible

computation [5]. We consider that the study presented in this paper

will be a good starting point for those further research directions.
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