
Lightweight Scalable Components

Tetsuo Kamina
The University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo,
113-0033, Japan
kamina@acm.org

Tetsuo Tamai
The University of Tokyo

3-8-1, Komaba, Meguro-ku, Tokyo,
153-8902, Japan
tamai@acm.org

Abstract
One limitation of the well-known family polymorphism approach
is that each “family” will be a large monolithic program. In this
paper, we introduce a minimal lightweight set of language features
that treat each member of a family as a reusable programming unit,
while preserving the important feature of scalability. The only one
language construct we propose in this paper is type parameter mem-
bers, which allows type parameters to be referred from the outside
of class declarations. To investigate properties of type parameter
members in the real programming language settings, we develop
a programming language Scalable Java (SJ), an extension of Java
generics with type parameter members. To carefully investigate the
type soundness of SJ, we develop FGJ#, a core calculus of this
extension based on FGJ, a functional core of Java with generics.
Furthermore, to explore how to implement this proposal, we define
the erasure of FGJ# programs as an extension of the erasure of FGJ
programs, which compiles SJ to Java without generics.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-Oriented Programming; D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Languages

Keywords Scalable Java, Type parameter members, Parametric
polymorphism, Family polymorphism, FGJ

1. Introduction
How to construct reusable software components has been one of the
most significant challenges in the research field of programming
languages. Most modern object-oriented languages with simple
name-based type systems such as Java and C# have been equipped
with simple linguistic means to define and extend/modify software
components, e.g., classes and inheritance. Furthermore, there has
been much work to improve modularity, reusability, and scalability
of the existing languages. In this paper, we focus on two significant
requirements for components: reusability and scalability.

An important requirement for components is that they be
reusable. Objects sometimes have complicated interactions with
one another and cannot be reused independently. To make software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’07, October 1–3, 2007, Salzburg, Austria.
Copyright c© 2007 ACM 978-1-59593-855-8/07/0010. . . $5.00

components reusable, some details of components should be ab-
stracted to make them applicable in contexts other than the one
in which they have been developed. For example, many research
efforts have been devoted to investigate how to design parametric
polymorphism in object-oriented languages[3, 24, 11, 2, 1]. In such
languages, types may be abstracted from the definitions of classes
and methods. However, some other important structures such as
nested classes, inner classes, etc. cannot be abstracted, thus nested
classes are not reusable programming units.

This restriction becomes a serious problem when we consider
the collaboration based implementation such as family polymor-
phism and other approaches [8, 12, 21, 30, 18, 5, 23]. Family poly-
morphism satisfies the important requirement of scalability; i.e.,
in family polymorphism, each set of mutually recursive classes,
namely a family, may be safely extended without modification of
the existing source code. However, there is one shortcoming in
this approach; since mutually recursive classes are programmed as
nested class members of a top-level class, each family becomes
a large monolithic program. Therefore, implementations of all the
members of one family are placed in a single source file, thus this
approach is not based on components; each member’s implementa-
tion cannot be reused in the different context, and cannot be devel-
oped in parallel.

In summary, we require a mechanism that treats each member
of family as a reusable programming unit, while preserving the
important feature of scalability.

In this paper, we introduce a minimal lightweight set of lan-
guage features to solve this problem. The idea is to abstract nested
classes from the definition of outer classes by using type parame-
ters. Since nested classes are parametrized, the actual implementa-
tions for them are not given in the outer class definition. Syntacti-
cally, the only one new language construct we propose is type pa-
rameter members, that allows type parameters to be referred from
the outside of class declarations, using the notation T#X, where T is
a type and X is a type parameter declared in (possibly some super
class of) T (if T is a type parameter, some super class of the type
bound of T). In our approach, the mutually recursive classes are
placed in separate source files, solving the problem that the family
polymorphism approach faced.

We show that this approach is scalable. One problem is that
the type of this is “hard-linked” to the enclosing class. To tackle
this problem, we define a type inference algorithm that infers the
possible extensions of type of this. With this feature, the safe
extension of mutually recursive classes that is supported by family
polymorphism is also possible in our approach.

To investigate properties of type parameter members in the real
programming language settings, we develop a programming lan-
guage Scalable Java (SJ), an extension of Java generics that is
equipped with type parameter members. It is a quite simple exten-
sion but has remarkable expressive power. To carefully investigate

Figure 1. Overview of our example

type soundness of SJ, we develop FGJ#, a core calculus of this
extension based on FGJ, a functional core of Java with generics.
Moreover, to explore how to implement this proposal, we define
the erasure of FGJ# programs as an extension of the erasure of
FGJ programs, which compiles SJ to Java without generics.

The rest of this paper is structured as follows. Section 2 de-
scribes the features of SJ, and how the aforementioned problems
are solved using SJ. In section 3, we formalize the proposed lan-
guage features by extending FGJ, and show the proposal is type
sound. In section 4, we define the erasure of FGJ# to show how the
proposed language is implemented. In section 5, we discuss how
this work is related to other researches. Finally, section 6 concludes
this paper.

2. Programming Lightweight Scalable
Components

2.1 A Graph Example
We start by informally describing the main aspects of type param-
eter members, the language construct we study in this paper. To
show how this construct is used to support family polymorphic ex-
tension, we consider an example originally presented in [12].

We illustrate this example in Figure 1. This example features
a family (or group) Graph, containing the members of the family,
namely Node and Edge. In our example, each instance of Node
holds a reference to connected edges (instances of Edge), and each
edge holds references to its source and destination nodes. Thus, the
definitions of Node and Edge are mutually recursive.

Then, we extend Graph to WGraph that adds the feature of
setting weight of each edge. In WGraph, the member Edge is refined
to store the weight of this edge. The member Node is also refined
to store its property. This property may be color, or label etc.; in
Figure 1, Node declares an abstract method value() to return an
integer value of this property. In our application, the weight of edge
is calculated by using this property. To do so, the connect method
declared in Edge is appropriately overridden.

Even though this example is simple, there exist many challenges
in it. At first, extending a set of classes that are mutually recursive
is very difficult in the existing object-oriented languages. In such
languages, mutually recursive classes refer to each other by their
names, thus different sets of mutually recursive classes necessarily
have different names, even though their structures are similar.

Considerable research efforts including family polymorphism
have been recently devoted to solve this problem [8, 12, 21, 30, 18,
5, 23]. In family polymorphism, like virtual methods, a reference to
a nested class member is resolved at run-time, thus the meaning of
mutual references to class names will change when a subclass of the
enclosing class is derived and those member classes are inherited.

Since the semantics of each nested class member is not hard-linked
to the enclosing class, we may safely extend the mutually recursive
classes.

The family polymorphism approach is very powerful; however,
it has one shortcoming. Since mutually recursive classes are pro-
grammed as nested class members of a top-level class, each family
becomes a large monolithic program. Both definitions of Edge and
Node are placed in the same source file. Therefore, the family poly-
morphism approach is not based on components; when there are
many kinds of Edge and Node, then it will be convenient if we may
compose them as we want, but the family polymorphism approach
does not provide any flexible ways for it. Therefore, we identify the
following requirements:

Separation of members of family. Each member of family may
be placed in a separate source file from that declares the family.

Furthermore, as in the most modern typed programming lan-
guages, we also require the following properties:

Type safety. Extensions cannot create run-time errors.

Modularity. Extensions cannot require modification or recompila-
tion of the existing systems.

Non-destructive extension. Each extension may co-exist in the
same system.

Lightweight extension. We would not require completely a new
programming language. Furthermore, new language constructs
that are added to the existing language should be very simple.

2.2 Solution Using SJ
2.2.1 Basic Strategy
We show how Scalable Java (SJ) fulfills the aforementioned re-
quirements. The basic strategy is to abstract each member of family
from the family by representing them using type parameters. How-
ever, we have to take into account that each member is a mutually
recursive class. To refer to another member, it must be able to iden-
tify the partner class belonging to the same family. Since member’s
implementation is separated from the implementation of family, the
member has to know to which family it belongs. Therefore, each
member also has to be parametrized over its belonging family. Fur-
thermore, to identify the partner class, which is represented as a
type parameter in the implementation of family, there needs to be
a mechanism that allows type parameters to be referred from the
outside of family declaration.

Current object-oriented languages does not provide such a
mechanism. We propose a new language construct type parame-
ter members that provides such a feature. We use the notation T#X,
where T is a type and X is a type parameter declared in (possibly
some super class, or type bound of) T. In the following subsections,
we show how this construct solves the problems by examples.

2.2.2 Simple Graph Family
Figure 2 shows the definition of the family Graph using SJ. It de-
clares type parameters E and N that correspond to the members rep-
resenting edges and nodes, respectively. It also declares an instance
variable ns that represents a set of node instances in the graph.

A class Node is a concrete implementation of a member of
Graph that represents nodes in a graph, and a class Edge is a
concrete implementation of a member of Graph that represents
edges in a graph. Both of them are parametrized over its belonging
family by type parameter G, whose upper bound is Graph. Node
declares an instance variable es, which represents a set of edges
where this node is connected. For the future extensibility, the type
of edge is not hard-linked to Edge; instead, it is declared as a type
parameter member G#E, where E is a type parameter that is declared

class Graph<E extends Edge<Graph<E,N>>,
N extends Node<Graph<E,N>>> {

Vector<N> ns = new Vector<N>();
void add(N n) { ns.add(n); }

}
class Node<G extends Graph<G#E,G#N>> {

Vector<G#E> es = new Vector<G#E>();
void add(G#E e) { es.add(e); }

}
class Edge<G extends Graph<G#E,G#N>> {

G#N src, dst;
void connect(G#N s, G#N d) {

src = s;
dst = d;
s.add(this);
d.add(this); }

}
class SimpleGraph

extends Graph<Edge<SimpleGraph>,
Node<SimpleGraph>> { }

Figure 2. Simple graph definitions

in the upper bound of G. Similarly, the type of instance variables
src and dst declared in Edge that represent source and destination
nodes respectively, and formal parameter types in connect are also
declared as a type parameter member G#N.

We do not have to invent a new language construct for com-
position of family members. Since each type parameter E, N, and
G appears on both sides of extends clause, i.e. we use F-bounded
polymorphism[9], we have to fix the definition of Graph, Node, and
Edge by introducing the fixed-point class SimpleGraph, which
will be used to build graph instances. The following is a demon-
stration program:

SimpleGraph g = new SimpleGraph();
SimpleGraph#N n1 = new SimpleGraph#N();
SimpleGraph#N n2 = new SimpleGraph#N();
SimpleGraph#E e1 = new SimpleGraph#E();
g.add(n1); g.add(n2); e1.connect(n1,n2);

Note that in this case we may instantiate type parameter members,
because their actual types are exactly known (see section 2.3.1).

2.2.3 Extending the Base Family
Figure 3 shows the definition of family WGraph that is an extension
of Graph. As in Graph, it also declares type parameters E and N.
In this case, the type parameters declared in a subclass override
the parameters declared in superclasses. Upper bounds for type
parameters E and N are covariantly refined to WeightEdge and
RichNode, respectively.

RichNode provides an interface for WeightEdge to provide the
property of the node through the abstract method value(). A class
ColorNode is one of the concrete implementations of RichNode.
Similarly, a class WeightEdge is a concrete implementation of a
member of WGraph that refines the definition of Edge. Both of
them also override the type parameter G that are declared in their
superclasses. Since type parameter members are used in the base
classes to refer to each other, in the extensions, we can refer to each
member of the extended family even when declarations in the base
classes are evaluated. For example, a method connect declared in
WeightEdge overrides connect declared in Edge, because each
of formal parameter types is declared as G#N, and G and N are
appropriately overridden.

// Colored and weighted graph extensions
class WGraph<E extends WeightEdge<WGraph<E,N>>,

N extends RichNode<WGraph<E,N>>>
extends Graph<E,N> { }

abstract
class RichNode<G extends Graph<G#E,G#N>>

extends Node<G> {
abstract int value();

}
class ColorNode<G extends Graph<G#E,G#N>>

extends RichNode<G> {
Color color;
int value() { ... }

}
class WeightEdge<G extends WGraph<G#E,G#N>>

extends Edge<G> {
int weight;
int f(G#N s, G#N d) {
int sv = s.value(); int dv = d.value();
... }

void connect(G#N s, G#N d) {
weight = f(s, d);
super.connect(s, d); }

}
class ColorWeightGraph extends

WGraph<WeightEdge<ColorWeightGraph>,
ColorNode<ColorWeightGraph>> { }

Figure 3. Weighted graph extension

class LabelNode<G extends Graph<G#E,G#N>>
extends RichNode<G> {

Label label;
int value() { ... }

}
class LabelWeightGraph extends

WGraph<WeightEdge<LabelWeightGraph>,
LabelNode<LabelWeightGraph>> { }

Figure 4. Another weighted graph extension

Finally, as in the case of SimpleGraph, we introduce a fixed-
point class ColorWeightGraph to complete the definition of
WGraph. We may instantiate each member of WGraph as follows:

ColorWeightGraph g = new ColorWeightGraph();
ColorWeightGraph#E e1 = new ColorWeightGraph#E();
ColorWeightGraph#N n1 = new ColorWeightGraph#N();
ColorWeightGraph#N n2 = new ColorWeightGraph#N();
g.add(n1); g.add(n2); e1.connect(n1,n2);

2.2.4 Replacing Implementations of Members
We then show that our approach enables much flexible composition
that is not supported by the family polymorphism approach. Since
each member is placed in a separate class, we may implement many
kinds of members, and we may combine them as we want.

Figure 4 shows that there may be another implementation of
nodes in WGraph other than ColorNode, namely LabelNode,
which is also declared as subclass of RichNode. The fixed-point
class LabelWeightGraph demonstrates that LabelNode is also
safely composed with WGraph. This modification is local to im-
plementation of nodes; since each implementation is provided in a
separate class, it does not affect development of other parts of the
graph application.

Furthermore, such extensions may also be used in the original
base Graph. For example, someone may require that there needs a
graph where each node is colored, but the weight feature on edges is
not needed. We may obtain such a graph by composing ColorNode
and Edge with Graph:

class ColorGraph extends
Graph<Edge<ColorGraph>,

ColorNode<ColorGraph>> { }

2.3 Rules Ensuring Type Safety
So far, we have shown the main aspects of SJ. The remaining im-
portant issue is its type safety. Actually, there are some challenges
in making SJ type system sound. In this section, we overview these
challenges and how we tackle the problems.

2.3.1 Reduction of Type Parameter Members
The first subtlety is that, if type parameter members are introduced,
there may be multiple representations for one type. To show this
fact, let us consider Figure 2 again. In this example, a generic
class Node declares a type parameter G whose upper bound is
Graph<G#E,G#N>. On the other hand, in the declaration of Graph,
Node is instantiated by assigning Graph<E,N> to the type parame-
ter. Therefore, the following subtyping relation must be satisfied:

Graph<E,N> <: Graph<Graph<E,N>#E,Graph<E,N>#N>

Actually, Graph<E,N>#E is the same type as E, thus the above
subtype relation is satisfied in SJ. In general, a type parameter
member is the same type as the corresponding argument for the
type parameter. In the semantic analysis of SJ programs, every type
parameter member is reduced to its argument. This reduction is
performed whenever the subtype relation is checked in the type
checking phase of compilation. The formal semantics for this type
reduction is given in section 3.

2.3.2 Type Inference for this
Some thoughtful readers may also wonder how the program shown
in Figure 2 is type checked, because there seems to be a mismatch
between the expected type of this and its actual type. In the
semantics of Java, the type of this is its enclosing class. The type
of an argument for the method call s.add(this) in Figure 2 is
therefore Edge<G>, where G is some subtype of Graph<G#E,G#N>.
On the other hand, the formal parameter type of the add method
is declared as G#E, where E’s upper bound is Edge<Graph<E,N>>.
The problem is that Edge<G> and Edge<Graph<E,N>> are actually
not compatible.

Apparently, this program does not produce any run-time errors,
because run-time type of this is compatible to Edge<Graph<E,N>>.
Therefore, we need to provide the programmers with some means
to tell the compiler this fact. There are some ways to do so. For
example, we may introduce a new kind of types like MyType (also
known as ThisType)[4, 7] to SJ. Another possible approach is to
provide some means to programmers to explicitly declare the actual
type of this, like the self type annotation of Scala[25]. However,
both of those approaches require significant language extensions.

On the other hand, using upper bounds of type parameters, the
actual type of this may be inferred. SJ takes this approach. We
informally describes type inference rules for this as follows:

• If one of the type parameters, namely X, has an upper bound
that is the enclosing class, the type of this inside this class is
X; i.e., in the following class declaration,

class C<.., X extends C<..,X,..>, ..> { .. }

the type of this inside C is X.

• If one of the type parameters, namely X, has an upper bound
that is a class that declares a type parameter, namely Y, whose
upper bound is the enclosing class of X, the type of this inside
this class is X#Y; i.e., in the following class declaration,

class C<X extends D<X#Y>> { .. }

where

class D<Y extends C<D<Y>>> { .. }

the type of this inside C is X#Y.
• Otherwise, the type of this is its enclosing class.

In the case of program shown in Figure 2, Edge declares a type pa-
rameter G whose upper bound is Graph<G#E,G#N>, and Graph de-
clares a type parameter Ewhose upper bound is Edge<Graph<E,N>>.
Therefore, the type of this used inside Edge is G#E, which is the
same as the formal parameter type of add method. Thus, the pro-
gram shown in Figure 2 is safely type checked (see lemma 3.4 in
section 3).

There may be ambiguity in the above algorithm. For example,
if there is the following class declaration,

class C<X extends C<X,Y>,
Y extends C<X,Y>> { .. }

the type of this may be both of X and Y. To avoid such ambiguity,
the current version of SJ does not proceed type inference if there
are multiple paths for type inference. Therefore, in the above case
the type of this will be C<X,Y>.

2.3.3 Some notes on subtyping
In Figure 3, ColorWeightGraph is not a subtype of SimpleGraph,
because the former is not a subclass of the latter. On the other
hand, we could declare ColorWeightGraph to be a subtype of
SimpleGraph as follows:

class WGraph<E extends WeightEdge<WGraph<E,N>>,
N extends RichNode<WGraph<E,N>>>

extends SimpleGraph { }
...
class ColorWeightGraph extends

WGraph<WeightEdge<ColorWeightGraph>,
ColorNode<ColorWeightGraph>> { }

In this case, ColorWeightGraph is a subclass of SimpleGraph,
so the former is a subtype of the latter.

Does our system allow covariant subtyping regarding type
parameter members, i.e., is ColorWeightGraph#N a subtype of
SimpleGraph#N? If this subtyping is allowed, the type system will
not be safe. For example, consider the following demonstration
code:

ColorWeightGraph g1 = new ColorWeightGraph();
SimpleGraph g2 = g1;
g2.add(new FooGraph#N());
// FooGraph is another subtype of SimpleGraph
g1.ns.elementAt(0).value(); // error!

In this example, we add an instance of FooGraph#N, which is a
subtype of SimpleGraph#N and does not provide a method named
value(), to the instance variable ns of g1, which is actually
expected to provide value().

SJ does not allow this subtyping, because type reduction is
performed whenever subtype relation is checked; type reduction
of ColorWeightGraph#N is RichNode<ColorWeightGraph>,
while type reduction of SimpleGraph#N is Node<SimpleGraph>,
and these types are not compatible. The same observation is found

Syntax:

T ::= X | N | T#X
N ::= C<T̄>
L ::= class C<X̄ � N̄>�N { T̄ f̄; K M̄ }
K ::= C(T̄ f̄) { super(f̄); this.f̄=f̄; }
M ::= <X̄ � N̄> T m(T̄ x̄) { return e; }
e ::= x | e.f | e.m<T̄>(ē) | new T(ē) | (T)e

Subclassing:

C � C
C � D D � E

C � E

class C<X̄ � N̄>�D<T̄>{...}
C � D

Figure 5. FGJ# syntax and subclassing

in [18], in which the policy that states inheritance of family mem-
bers is not subtyping is taken. There are other approaches that
allow such kind of subtyping but introduce a notion of exact types
to ensure type safety (e.g., [8]), which is discussed in section 5.

3. FGJ#: A Tiny Core of Scalable Components
In this section, we formalize the ideas described in the previous
section as a small calculus named FGJ# based on Featherweight
GJ (FGJ) [16], a functional core of class-based object-oriented
languages with the feature of generics.

3.1 Syntax
The abstract syntax of FGJ# is given in Figure 5. The metavariables
T, S, V, U, and Q range over types; X, Y, Z, and W range over type
variables; N and P range over nonvariable types; C, D, and E range
over class names; L ranges over class declarations; K ranges over
constructor declarations; M ranges over method declarations; f and
g range over field names; m ranges over method names; x and y
range over variables; e and d range over expressions.

We write f̄ as a shorthand for a possibly empty sequence
f1 · · · fn, and M̄ as a shorthand for M1 · · · Mn. Furthermore, we
abbreviate pairs of sequences in a similar way, writing “T̄ f̄” as a
shorthand for “T1 f1,...,Tn fn,” “this.f̄=f̄;” as a shorthand
for “this.f1=f1;...;this.fn=fn;”, “X̄� N̄” as a shorthand for
“X1 � N1, · · · , Xn � Nn”, and so on. We write the empty sequence
as · and the length of sequence f̄ as #(f̄). Sequences of type vari-
ables, field declarations, parameter names, and method declarations
are assumed to contain no duplicate names.

In syntax, the only difference between FGJ# and FGJ is that
FGJ# has type constructor T#X. As in FGJ, we abbreviate the
keyword extends to the symbol �. We assume that the set of
variables includes the special variable this, which is considered
to be implicitly bound in every method declaration. FGJ# supports
polymorphic methods, and type parameters for generic method
invocation are explicitly provided with the form e.m<T̄>(ē). A
class must declare only one constructor that initializes all the fields
of that class. A constructor declaration is only the place where
assignment operator is allowed; once initialized, an instance never
change its state. Method body consists of single return statement.
Thus, FGJ# is a purely functional calculus.

Subclassing in FGJ#, also shown in Figure 5, represented by
the relation C� D between class names, is a reflexive and transitive
closure induced by the clause C<X̄ � N̄> � D<T̄>.

An FGJ# program is a pair (CT ,e) of a class table CT and
an expression e. A class table is a map from class names to class

Field lookup:

fields(Object) = · (F-OBJECT)

class C<X̄ � N̄>�N {S̄ f̄; K M̄} fields([T̄/X̄]N) = Ū ḡ

fields(C<T̄>) = Ū ḡ, [T̄/X̄]S̄ f̄
(F-CLASS)

Method type lookup:

class C<X̄ � N̄>�N {S̄ f̄; K M̄}
<Ȳ � P̄> U m(Ū x̄) { return e; } ∈ M̄

mtype(m, C<T̄>) = [T̄/X̄](<Ȳ � P̄>Ū→ U)
(MT-CLASS)

class C<X̄ � N̄>�N {S̄ f̄; K M̄} m 6∈ M̄

mtype(m, C<T̄>) = mtype(m, [T̄/X̄]N)
(MT-SUPER)

Method body lookup:

class C<X̄ � N̄>�N {S̄ f̄; K M̄}
<Ȳ � P̄> U m(Ū x̄) { return e0; } ∈ M̄

mbody(m<V̄>, C<T̄>) = x̄.[T̄/X̄, V̄/Ȳ]e0

(MB-CLASS)

class C<X̄ � N̄>�N {S̄ f̄; K M̄} m 6∈ M̄

mbody(m<V̄>, C<T̄>) = mbody(m<V̄>, [T̄/X̄]N)
(MB-SUPER)

Type bound lookup:

class C<X̄ � N̄>�N {S̄ f̄; K M̄}
bound(Xi, C<T̄>) = [T̄/X̄]Ni

class C<X̄ � N̄>�N {S̄ f̄; K M̄} Y 6∈ X̄

bound(Y, C<T̄>) = bound(Y, [T̄/X̄]N)

Figure 6. FGJ# lookup functions

declarations. The expression e may be considered as the main
method of the real SJ program. The class table is assumed to satisfy
the following conditions: (1) CT (C) = class C ... for every
C ∈ dom(CT); (2) Object 6∈ dom(CT); (3) C ∈ dom(CT) for
every class name appearing in ran(CT); (4) there are no cycles in
subclass relation induced by CT .

In the induction hypothesis shown below, we abbreviate CT (C) =
class C ... as class C

3.2 Auxiliary definitions
For the typing and reduction rules, we need a few auxiliary defini-
tions, given in Figure 6 and 7. The function fields(N) is a sequence
T̄ f̄ of field types and names declared in N. Application of type sub-
stitution [T̄/N̄] is defined in the customary manner. The type of the
method invocation m at N, written mtype(m,N), is a type of the form
<X̄ � N̄>Ū → U. The body of the method invocation m at N, written
mbody(m,N), is a pair, written x̄.e, of a sequence of parameters x̄
and an expression e. Upper bound of type variable X in N, written

Type reduction:

reduce(C<T̄>) = C<T̄>

reduce(X) = X reduce(X#Y) = X#Y

class C<X̄ � N̄>�N { · · · }
reduce(C<T̄>#Xi) = reduce(Ti)

class C<X̄ � N̄>�N { · · · } Y 6∈ X̄

reduce(C<T̄>#Y) = reduce([T̄/X̄]N#Y)

Type inference for this:

class C<X̄ � N̄>� { · · · } Ni = C<T̄> Ti = Xi

∀j, j 6= i, Nj 6= C<T̄>

thistype(C<X̄>) = Xi

class C<X̄ � N̄>�{ · · · } Ni = D<T̄> Tj = Xi#Yj

∀k, k 6= i, Nk 6= D<T̄>
class D<Ȳ � P̄>�{ · · · } Pj = C<S̄> Si = D<Ū>

Uj = Yj ∀k, k 6= j, Pk 6= C<S̄>

thistype(C<X̄>) = Xi#Yj

class C<X̄ � N̄>� { · · · } Ni = C<T̄> Ti = Xi

∀j, j 6= i, Nj 6= C<T̄>

thistype(C<T̄>) = Ti

class C<X̄ � N̄>�{ · · · } Ni = D<T̄> Tj = Xi#Yj

∀k, k 6= i, Nk 6= D<T̄>
class D<Ȳ � P̄>�{ · · · } Pj = C<S̄> Si = D<Ū>

Uj = Yj ∀k, k 6= j, Pk 6= C<S̄>

thistype(C<T̄>) = Ti#Yj

class C<X̄ � N̄>�N { · · · }
thistype(C<T̄>) = C<T̄>

Figure 7. Type reduction and type inference for this

bound(X, N), is a type that appears right hand side of � whose left
hand side is X.

Rules of type reduction and type inference of this are shown
in Figure 7. The function reduce performs type reduction that
reduces type parameter members to their actual (argument) types.
The result of reduction is further reduced until it reaches a base case
of reduction rules. Base cases are types that are not type parameter
members, or type parameter members on type parameters.

The function thistype returns the inferred type of this using
the upper bounds of type parameters. Note that, to prove the type
soundness theorem, we have to define thistype of type instantiation
besides three cases explained in section 2.3.2.

3.3 Typing
An environment Γ is a finite mapping from variables to types,
written x̄ : T̄. A type environment ∆ is a finite mapping from type
variables to nonvariable types, written X̄<:N̄.

As defined in Figure 8, we write bound∆(T) for an upper bound
of T in ∆. Besides type parameters and nonvariable types, we
also need to define bound∆ of type parameter member T#X. The

Bound of type:

bound∆(X) = ∆(X)

bound∆(N) = N

bound∆(T#X) = bound(X, bound∆(T))

Subtyping:
∆ ` T <: T

(S-REFL)
∆ ` X <: ∆(X)

(S-VAR)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
(S-TRANS)

class C<X̄ � N̄>�N {...}
∆ ` C<T̄> <: [T̄/X̄]N

(S-CLASS)

bound∆(T#X) = N

∆ ` T#X <: N
(S-DOT)

Figure 8. FGJ# subtyping rules

auxiliary function bound, which is defined in Figure 6, is used in
the definition of bound∆.

The subtyping relation ∆ ` S <: T, read “S is a subtype of T in
∆,” is also defined in Figure 8. As in FGJ, subtyping is the reflexive
and transitive closure of the extends relation, and type parameters
are invariant with regard to subtyping. If the upper bound of type
parameter member T#X is N, then T#X is a subtype of N.

We write ∆ ` T ok if a type T is well formed in context ∆.
The rules for well-formed types appear in Figure 9. A type C<T̄> is
well formed if a class declaration that begins with class C<X̄� N̄>
exists in CT , substituting T̄ for X̄ respects the bounds N̄, and all
of T̄ are ok. A type parameter member T#X is well-formed if the
upper bound of T is defined, and there is a super class, namely
C, of it that declares the type parameter X. Before subtyping is
judged, type reduction rules shown in Figure 7 are applied to both
sides of <:(we write ∆ ` reduce(T̄)<:reduce(S̄) as a shorthand for
∆ ` reduce(T1)<:reduce(S1) · · ·∆ ` reduce(Tn)<:reduce(Sn)).

We say that a type environment ∆ is well-formed if ∆ ` ∆(X)
ok for all X in dom(∆). We also say that an environment Γ is well-
formed with respect to ∆, written ∆ ` Γ ok, if ∆ ` Γ(x) ok for
all x in dom(Γ).

Figure 9 also shows rules that allow covariant overriding on
the method result type, which is ensured by override(m, N, <Ȳ �

P̄>T̄→ T0). Note also that covariant overriding of type parameters
is allowed, which is ensured by override(X, L).

Typing rules for expressions, methods, and classes are defined
in Figure 10. The typing judgment for expressions is of the form
∆; Γ ` e : T, read as “in the type environment ∆ and the
environment Γ, the expression e has type T.” The typing rules are
syntax directed, with one rule for each form of expression, save that
there are three rules for typecasts. As in FGJ, in the rule T-DCAST,
dcast(C,D) defined in Figure 9 ensures that the result of the cast will
be the same at runtime. Note that before subtyping is judged, type
reduction is applied to both sides of <:1. Note also that we may
instantiate a nonvariable type T providing the type reduction of T is
a nonvariable type.

1 To employ the algorithmic typing style[27], we explicitly apply the func-
tion reduce to the subtype judgments appearing on typing rules, instead of
introducing one extra subtyping rule for type reduction. This approach sim-
ply yields a type checking algorithm.

Well-formed types:

∆ ` Object ok (WF-OBJECT)

X ∈ dom(∆)

∆ ` X ok
(WF-VAR)

class C<X̄ � N̄>�N {...}
∆ ` T̄ ok ∆ ` reduce(T̄) <: reduce([T̄/X̄]N̄)

∆ ` C<T̄> ok
(WF-CLASS)

class C<X̄ � N̄>�N {...}
bound∆(T) = D<T̄> D � C ∆ ` T ok

∆ ` T#Xi ok
(WF-DOT)

Valid downcast:

dcast(C, D) dcast(D, E)

dcast(C, E)

class C<X̄ � N̄>�D<T̄> {...}
X̄ = FV (T̄)

dcast(C, D)

(FV (T̄) denotes the set of type variables in T̄)

Valid method overriding:

mtype(m, N) = <Z̄ � Q̄>Ū→ U0 implies
P̄, T̄ = [Ȳ/Z̄](Q̄, Ū) and Ȳ<:P̄ ` reduce(T0) <: reduce([Ȳ/Z̄]U0)

override(m, N, <Ȳ � P̄>T̄→ T0)

Valid type overriding:

bound(X, N) = P implies
X ∈ X̄ and X̄<:N̄ ` reduce(bound(X, C<T̄>)) <: reduce(P)

override(X, class C<X̄ � N̄>�N {...})

Figure 9. FGJ# type well-formedness rules

The typing judgment for method declarations, which has the
form M OK IN C, read “method declaration M is ok when it occurs
in class C,” uses the expression typing judgment on the body of the
method, where the free variables are the parameters of the method
with their declared types and the special variable this. The type of
this is inferred by using function thistype. Covariant overriding of
methods on the method result type is also allowed in FGJ#.

The typing judgment for class declarations, which has the form
C OK, read “class declaration C is ok,” checks that the constructor
is well-defined and that each method declaration in the class is ok.
Furthermore, it allows covariant overriding of type parameters.

A class table CT is OK if all its definitions are OK.

3.4 Reduction
The operational semantics of FGJ# is defined with the reduction
relation that is of the form e −→ e′, read “expression e reduces

Expression typing:

∆; Γ ` x : Γ(x) (T-VAR)

∆; Γ ` e0 : T0 fields(bound∆(T0)) = T̄ f̄

∆; Γ ` e0.fi : Ti

(T-FIELD)

∆; Γ ` e0 : T0 mtype(m, bound∆(T0)) = <Ȳ � P̄>Ū→ U
∆ ` V̄ ok ∆ ` reduce(V̄) <: reduce([V̄/Ȳ]P̄)

∆; Γ ` ē : S̄ ∆ ` reduce(S̄) <: reduce([V̄/Ȳ]Ū)

∆; Γ ` e0.m<V̄>(ē) : [V̄/Ȳ]U
(T-INVK)

∆ ` T ok fields(reduce(T)) = T̄ f̄
reduce(T) is a nonvariable type

∆; Γ ` ē : S̄ ∆ ` reduce(S̄) <: reduce(T̄)

∆; Γ ` new T(ē) : T
(T-NEW)

∆; Γ ` e0 : T0 ∆ ` reduce(bound∆(T0)) <: reduce(T)
reduce(T) is a nonvariable type

∆; Γ ` (T)e0 : T
(T-UCAST)

∆; Γ ` e0 : T0 ∆ ` T ok
∆ ` reduce(T) <: reduce(bound∆(T0))

N = C<T̄> bound∆(T0) = D<Ū> dcast(C, D)
reduce(T) is a nonvariable type

∆; Γ ` (T)e0 : T
(T-DCAST)

∆; Γ ` e0 : T0 ∆ ` T ok
reduce(T) = C<T̄> bound∆(T0) = D<Ū>

C 6 �D D 6 �C stupid warning
reduce(T) is a nonvariable type

∆; Γ ` (T)e0 : T
(T-SCAST)

Method typing:

∆ = X̄<:N̄, Ȳ<:P̄ ∆ ` T̄, T, P̄ ok
∆; x̄ : T̄, this : thistype(C<X̄>) ` e0 : S

∆ ` reduce(S) <: reduce(T)
class C<X̄ � N̄>�N {...} override(m, N, <Ȳ � P̄>T̄→ T)

<Ȳ � P̄> T m(T̄ x̄) { return e0; } OK IN C<X̄ � N̄>
(T-METHOD)

Class typing:

X̄<:N̄ ` N̄, N, T̄ ok fields(N) = Ū ḡ M̄ OK IN C<X̄ � N̄>
K = C(Ū ḡ, T̄ f̄) {super(ḡ); this.f̄=f̄;}

override(X̄, class C<X̄ � N̄>�N{...})
class C<X̄ � N̄>�N {T̄ f̄; K M̄} OK

(T-CLASS)

Figure 10. FGJ# typing rules

Computation:

fields(reduce(T)) = T̄ f̄

(new T(ē)).fi −→ ei
(R-FIELD)

mbody(m<V̄>, reduce(T)) = x̄.e0

(new T(ē)).m<V̄>(d̄) −→ [d̄/x̄, new T(ē)/this]e0

(R-INVK)

∅ ` reduce(T) <: P

(P)(new T(ē)) −→ new T(ē)
(R-CAST)

Congruence:

e0 −→ e′0

e0.f −→ e′0.f
(RC-FIELD)

e0 −→ e′0

e0.m<T̄>(ē) −→ e′0.m<T̄>(ē)
(RC-INV-RECV)

ei −→ e′i

e0.m<T̄>(...,ei,...) −→ e0.m<T̄>(...,e
′
i...)

(RC-INV-ARG)

ei −→ e′i

new T(...,ei,...) −→ new T(...,e′i,...)
(RC-NEW-ARG)

e0 −→ e′0

(T)e0 −→ (T)e′0
(RC-CAST)

Figure 11. FGJ# reduction rules

to expression e′ in one step.” We write −→∗ for the reflexive and
transitive closure of −→.

The reduction rules are given in Fig. 112. There are three reduc-
tion rules, one for field access, one for method invocation, and one
for casting. The field access reduces to the corresponding argument
for the constructor. The method invocation reduces to the expres-
sion of the method body, substituting all the parameter x̄ with the
argument expression d̄ and the special variable this with the re-
ceiver. We write [d̄/x̄, ē/ȳ]e0 for the expression obtained from e0

by replacing x1 with d1,...,xn with dn, and y with e.

3.5 Properties
We show that FGJ#’s type system is sound with respect to the
operational semantics. The basic structures of the proofs are similar
to those of FGJ. The outline of proof is as follows. At first, we
require some lemmas.

LEMMA 3.1. If ∆ ` S<:T, then ∆ ` bound(X, S)<:bound(X, T).

LEMMA 3.2. Suppose ∆1, X̄<:N̄, ∆2 ` T ok and ∆1 ` Ū<:[Ū/X̄]N̄
with ∆1 ` Ū ok and none of X̄ appearing in ∆1. Then, ∆1, [Ū/X̄]∆2 `
bound∆1,[Ū/X̄]∆2([Ū/X̄]T)<:[Ū/X̄](bound∆1,X̄<:N̄,∆2(T)).

LEMMA 3.3. If ∆ ` S<:T, then ∆ ` reduce(S)<:reduce(T), and
if ∆ ` reduce(S)<:reduce(T), then ∆ ` S<:T.

2 As in the original FJ, FGJ# uses the non-deterministic reduction strategy.

LEMMA 3.4. If class C<X̄ � N̄>�N{· · · }, then X̄<:N̄ `
thistype(C<X̄>)<:N.

With these lemmas, we can prove the following important lem-
mas:

LEMMA 3.5 (Type Substitution Preserves Subtyping). If ∆1, X̄<:N̄,
∆2 ` S<:T and ∆1 ` Ū<:[Ū/X̄]Ū with ∆1 ` Ū ok, and none of X̄
appearing in ∆1, then ∆1, [Ū/X̄]∆2 ` [Ū/X̄]S<:[Ū/X̄]T.

Proof. By induction on the derivation of ∆1, X̄<:N̄, ∆2 ` S<:T
using Lemma 3.1. 2

LEMMA 3.6 (Type Substitution Preserves Type Well-Formedness).
If ∆1, X̄<:N̄, ∆2 ` T ok and ∆1 ` Ū<:[Ū/X̄]N̄ with ∆1 ` Ū ok and
none of X̄ appearing in ∆1, then ∆1, [Ū/X̄]∆2 ` [Ū/X̄]T ok.

Proof. By induction on the derivation of ∆1, X̄<:N̄, ∆2 ` T ok
using Lemma 3.2. 2

LEMMA 3.7 (Type Substitution Preserves Typing). If ∆1, X̄<:N̄, ∆2;
Γ ` e : T and ∆1 ` Ū<:[Ū/X̄]N̄ where ∆1 ` Ū ok and none of X̄
appearing in ∆1, then ∆1, [Ū/X̄]∆2; [Ū/X̄]Γ ` [Ū/X̄]e : S for some
S such that ∆1, [Ū/X̄]∆2 ` S<:[Ū/X̄]T.

Proof. By induction on the derivation of ∆1, X̄<:N̄, ∆2; Γ ` e :
T using Lemmas 3.5 and 3.6. 2.

LEMMA 3.8 (Term Substitution Preserves Typing). If ∆; Γ, x̄ :
T̄ ` e : T and ∆; Γ ` d̄ : S̄ where ∆ ` S̄<:T̄, then ∆; Γ `
[d̄/x̄]e : S for some S such that ∆ ` S<:T.

Proof. By induction on the derivation of ∆; Γ, x̄ : T̄ ` e : T
using Lemma 3.5. 2

LEMMA 3.9. If mtype(m, C<T̄>) = <Ȳ�P̄>Ū→ U and mbody(m<V̄>,
C<T̄>) = x̄.e0 where ∆ ` C<T̄> ok and ∆ ` V̄ ok and
∆ ` V̄<:[V̄/Ȳ]P̄, then there exist some N and S such that ∆ `
C<T̄><:N and ∆ ` N ok and ∆ ` S<:[V̄/S̄]U and ∆ ` S ok and
∆; x̄ : [V̄/Ȳ]Ū, this : thistype(N) ` e0 : S.

Proof. By induction on the derivation of mbody(m<V̄>, C<T̄>) =
x̄.e using Lemmas 3.4, 3.5, and 3.7. 2

Then, we can prove the following subject reduction theorem.

THEOREM 3.1 (Subject Reduction). If ∆; Γ ` e : T and e −→
e′, then ∆; Γ ` e′ : T′ for some T′ such that ∆ ` T′<:T.

Proof. By induction on the derivation of e −→ e′ using Lem-
mas 3.8 and 3.9. 2

The proof of the following progress theorem is easy.

THEOREM 3.2 (Progress). Suppose e is a well-typed expression.

1. If e includes new N0(ē).f as a subexpression, then fields(N0) =
T̄ f̄ and f ∈ f̄ for some T̄ and f̄.

2. If e includes new N0(ē).m<V̄>(d̄) as a subexpression, then
mbody(m<V̄>, N0) = x̄.e0 and #(x̄) = #(d̄) for some x̄ and
e0.

To state FGJ# type soundness formally, we give the definition
of FGJ# value below:

v ::= new N(v̄)

Finally, we get the FGJ# type soundness theorem.

THEOREM 3.3 (FGJ# Type Soundness). If ∅; ∅ ` e : T and
e −→∗ e′ with e′ a normal form, then e′ is either (1) an FGJ#
value v with ∅; ∅ ` v : S and ∅ ` S<:T or (2) an expression
containing (P)new N(ē) where ∅ ` N<:P.

Proof. Immediate from Theorems 3.1 and 3.2. 2

We may also show that if an expression e is cast-safe in ∆; Γ
(i.e. the type derivations of the underlying CT and ∆; Γ ` e : T
do not use T-DCAST and T-SCAST rules), it does not produce any
typecast errors.

THEOREM 3.4. If e is cast-safe in ∅; ∅ and e −→∗ e′ with e′ a
normal form, then e′ is a value v.

4. Implementation
As in GJ, our SJ compiler translates source code of SJ to Java (with-
out generics), which maintains no information about type parame-
ters at runtime. We model the implementation of SJ by extending
the existing framework of erasure translation from FGJ to FJ[16].
Due to limited space, we briefly describe how SJ programs are
erased to Java programs by examples. Formalization and studies
on properties of this translation are remained in future work.

Like the erasure algorithm of FGJ, an SJ program is erased
by replacing types with their erasures, inserting downcasts where
required. In the erasure algorithm of FGJ, a type is erased by
removing type parameters, and replacing type parameters with the
erasures of their bounds. However, there are two difficulties when
applying this mechanism to the erasure of SJ; (1) we need to change
the definition of erasure of types; (2) we need more synthetic casts.

To show how our erasure semantics is changed from that of FGJ,
let us consider the following example. In the erasure algorithm of
FGJ, the erasure of class Edge<G> shown in Figure 2 will be as
follows,

class Edge {
Node src, dst;
void connect(Node s, Node d) {

src = s;
dst = d;
s.add(this);
d.add(this); }}

and the erasure of class WeightEdge<G> shown in Figure 3 will be
as follows, because type parameters are replaced with the erasures
of their bounds:

class WeightEdge extends Edge {
int weight;
int f(RichNode s, RichNode d) {

int sv = s.value(); int dv = d.value();
... }

void connect(RichNode s, RichNode d) {
weight = f(s, d);
super.connect(s, d); }

int f(int i1, int i2) { return 0; } }

Unfortunately, the erased connectmethod declared in WeightEdge
does not override the connect method declared in Edge, while the
original one does. Therefore, behavior of the erased program is
changed from that of the original program. Thus, we have to mod-
ify the definition of erasures of type parameters; while an erasure of
a type parameter is defined as its bound in FGJ, in SJ, it is defined
as the bound of a type parameter declared in the highest superclass.
In this definition, the erasure of formal parameter type G#E of the
connect method in WeightEdge<G> is Node, thus it appropriately
overrides the superclass’ method.

Then, a second difficulty arises. Suppose the modified erasure
of WeightEdge<G> shown below:

class WeightEdge extends Edge {
int weight;
int f(Node s, Node d) {

// type error!
int sv = s.value(); int dv = d.value();

... }
void connect(Node s, Node d) {

weight = f(s, d);
super.connect(s, d); } }

This erased program actually cannot be typed, because the erased
class Node does not declare a method value(). To recover the
erased type information, we have to insert synthetic casts as fol-
lows:

class WeightEdge extends Edge {
int weight;
int f(Node s, Node d) {

int sv = ((ColorNode)s).value();
int sv = ((ColorNode)d).value();
... }

void connect(Node s, Node d) {
weight = f(s, d);
super.connect(s, d); } }

This erasure is a well-typed Java program that preserves the
behavior of the original SJ program.

5. Related Work
Virtual classes[20, 17, 14], also known as path-dependent types
[13, 25], are similar to type parameter members in that types are de-
clared as fields of classes and they are refereed from the outside of
class declarations as instance variables. In our proposal, however,
types are referred as static members of classes, which is neces-
sary to express F-bounded polymorphism such as class Node<G
extends Graph<G#E,G#N>> {...}.

Type parameter members partially supports family polymor-
phism [12, 18]. The difference is, while the original family poly-
morphism uses the same name as each member of the original fam-
ily to that of the extended family, in our approach, we have to invent
new names for members in the extended family. Furthermore, pro-
grams written in the pure family polymorphism approaches tend to
be less verbose than ours, where we need to provide type bounds
to type parameter members and define fixed point classes. On the
other hand, in our approach, each member of family may be placed
in the separate source file.

Originally, nested classes in family polymorphism are members
of an object, thus the language essentially involves a dependent
type system. On the other hand, based on the observation given
by [19], Igarashi et al. propose a much simpler variant of family
polymorphism, in which families are identified with classes[18].
Even though this approach sacrifices some important features of the
original family polymorphism (e.g. each member of family may not
access the instance of the enclosing class), the resulting calculus is
quite compact and reasonably expressive. Our approach is similar
to this approach, in that type parameter members are also static
members of enclosing class. There are also some other related work
on family polymorphism: [21, 22, 26, 15, 8, 5].

Besides path-dependent types, Scala[25] also supports symmet-
ric mixin compositions and self-type annotations. Self-type anno-
tations allow us to explicitly declare the type of this. With these
features, our programming style where members of families may
be placed in the separate source files is also possible in Scala. Ac-
tually, Scala has much expressive power that SJ does not support.
On the other hand, SJ is a quite simple extension of Java 5.0 that
has reasonable expressive power. Since its difference from Java is
very small, it will be easy to develop tools and refactor the existing
programs.

MyType (or sometimes called ThisType) is also studied to solve
the mismatching problem of recursive class definitions [6, 7]. My-
Type is the type of this and changes its meaning along the inheri-

tance chain. Lately, this idea is extended to mutually recursive class
definitions[8, 5] by introducing constructs to group mutually recur-
sive definitions. These approaches are similar to us in the sense that
dependent types are not used. However, like other approaches, the
resulting group will be a large monolithic program. Another impor-
tant difference is, in these work, covariant subtyping of members is
allowed. To ensure type safety, they introduce the notion of exact
types and allow us to invoke a method that take an argument of the
same family only when the receiver’s family is exactly known.

The type inference rules for this are also independently in-
vented in [28], where translation from lightweight family polymor-
phism [18] to Featherweight GJ with a little extension of F-bounded
polymorphism is considered.

6. Concluding Remarks
We have proposed a new language construct named type param-
eter members and the language SJ, an extension of Java generics
that is equipped with type parameter members. With this construct,
we may abstract nested classes from the definition of outer class.
With the mechanism of type inference of this, mutually recursive
classes can be safely scaled without modification of existing source
code, and these classes may be placed in the separate source files,
solving the problem of family polymorphism approach in which
each family becomes a large monolithic program. The core lan-
guage FGJ# ensures type soundness of the proposed language, and
the description of the erasure algorithm provides useful information
for language implementation.

This approach cannot abstract inner classes (not nested classes)
from the definition of outer class. In the body of Node, e.g., we may
not access the enclosing instance. We feel that how to support this
feature is worth pursuing. Another direction for future work will
be applying the proposed mechanism to mixin layers approaches
[29, 10]. Since mixins provides convenient means for abstracting
super classes from class declarations, such extension will provide
much stronger support for component based programming.

References
[1] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type

parameterization to the Java language. In Conference Proceedings of
OOPSLA ’97, Atlanta, pages 49–65. ACM, 1997.

[2] Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-class
approach to genericity. In Proceedings of OOPSLA2003, pages
96–114, 2003.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In OOPSLA’98, pages 183–200, 1998.

[4] Kim Bruce, Angela Schuett, Robert van Gent, and Adrian Fiech.
PolyTOIL: A type-safe polymorphic object-oriented language. ACM
Transactions on Programming Languages and Systems (TOPLAS),
25(2):225–290, 2003.

[5] Kim B. Bruce. Some challenging typing issues in object-oriented
languages. Electronic Notes in Theoretical Computer Science, 82(8),
2003.

[6] Kim B. Bruce, Adrian Fiech, and Leaf Peterson. Subtyping is not a
good “match” for object-oriented languages. In ECOOP’97, volume
1241 of LNCS, pages 104–127, 1997.

[7] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into
Java. In ECOOP 2004, volume 3086 of LNCS, pages 389–413, 2004.

[8] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe
alternative to virtual types. In ECOOP’98, volume 1445 of LNCS,
pages 523–549, 1998.

[9] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and
John C. Mitchell. F-bounded polymorphism for object-oriented
programming. In Proceedings of the Fourth International Conference

on Functional Programming Languages and Computer Architecture,
pages 273–280, 1989.

[10] Richard Cardone and Calvin Lin. Comparing frameworks and layered
refinement. In ICSE 2001, pages 285–294, 2001.

[11] Robert Cartwright and Jr. Guy L. Steele. Compatible genericity with
run-time types for the Java programming language. In OOPSLA
1998, pages 201–215, 1998.

[12] Eric Ernst. Family polymorphism. In ECOOP 2001, volume 2072 of
LNCS, pages 303–327, 2001.

[13] Erik Ernst. Propagating class and method combination. In
ECOOP’99, volume 1628 of LNCS, pages 67–91. Springer-Verlag,
1999.

[14] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class
calculus. In Proceedings of 33th ACM Symposium on Principles of
Programming Languages (POPL), pages 270–282, 2006.

[15] Stephan Hermann. Object Teams: Improving modularity for
crosscutting collaborations. In Net Object Days 2002, volume 2591
of LNCS, 2002.

[16] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. ACM TOPLAS,
23(3):396–450, 2001.

[17] Atsushi Igarashi and Benjamin C. Pierce. Foundations for virtual
types. Information and Computation, 175(1):34–49, 2003.

[18] Atsushi Igarashi, Chieri Saito, and Mirko Viroli. Lightweight family
polymorphism. In Programming Languages and Systems, Third
Asian Symposium, APLAS 2005, volume 3780 of LNCS, pages 161–
177, 2005.

[19] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: Concord. In ECOOP Workshop
on Formal Techniques for Java-like Programs (FTfJP 2004), 2004.

[20] Ole Lehrmann Madsen and Birger Moller-Pdersen. Virtual classes:
A powerful mechanism in object-oriented programming. In
OOPSLA’89, pages 397–406, 1989.

[21] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. In OOPSLA’04, pages 99–115,
2004.

[22] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested
intersection for scalable software composition. In OOPSLA’06, pages
21–35, 2006.

[23] Martin Odersky, Vincent Cremet, Christine Rockl, and Matthias
Zenger. A nominal theory of objects with dependent types. In
ECOOP’03, volume 2743 of LNCS, pages 201–224, 2003.

[24] Martin Odersky and Philip Wadler. Pizza into Java: Translation theory
into practice. In ACM Symposium on Principles of Programming
Languages (POPL), pages 146–159, 1997.

[25] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In OOPSLA’05, pages 41–57, 2005.

[26] Klaus Ostermann. Dynamically composable collaborations with
delegation layers. In ECOOP 2002, volume 2374 of LNCS, pages
89–110, 2002.

[27] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[28] Chieri Saito and Atsushi Igarashi. The essence of lightweight family
polymorphism. In FTfJP, 2007.

[29] Yannis Smaragdakis and Don Batory. Mixin layers: An object-
oriented implementation technique for refinements and collaboration-
based design. ACM TOSEM, 11(2):215–255, 2002.

[30] Kresten Krab Thorup and Mads Torgersen. Unifying genericity:
Combining the benefits of virtual types and parameterized classes. In
ECOOP’99, volume 1628 of LNCS, pages 186–204, 1999.

