
Lightweight Dependent Classes

Tetsuo Kamina
The University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo,
113-0033, Japan
kamina@acm.org

Tetsuo Tamai
The University of Tokyo

3-8-1, Komaba, Meguro-ku, Tokyo,
153-8902, Japan
tamai@acm.org

Abstract
Extensive research efforts have been devoted to implement a group
of type-safe mutually recursive classes; recently, proposals for sep-
arating each member of the group as a reusable and composable
programming unit have also been presented. One problem of these
proposals is verbosity of the source programs; we have to declare
a recursive type parameter to parameterize each mutually recur-
sive class within each class declaration, and we have to declare
a fixed-point class with empty class body for each parameterized
class. Therefore, even though the underlying type system is sim-
ple, programs written in these languages tend to be rather complex
and hard to understand. In this paper, we propose a language with
lightweight dependent classes that forms a simple type system built
on top of generic Java. In this language, we can implement each
member of type-safe mutually recursive classes in a separate source
file without writing a lot of complex boilerplate code. To carefully
investigate type soundness of our proposal, we develop X.FGJ, a
simple extension of FGJ supporting lightweight dependent classes.
This type system is proved to be sound.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-Oriented Programming; D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Languages

Keywords Mutually recursive extensions, Class-based languages,
Generics, Type safety, Dependent classes

1. Introduction
Recently, extensive research efforts have been devoted to imple-
ment a group of type-safe mutually recursive classes and to separate
each member of the group as a reusable and composable program-
ming unit. These pieces of work address the following problem.
In most modern object-oriented languages with simple name-based
type system such as Java and C#, each class is referred by its name,
thus different sets of mutually recursive classes necessarily have
different names, even though their structures are similar. The idea
of grouping the related classes and nesting them inside a class that
represents the group has many success stories for addressing this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-267-2/08/10. . . $5.00

problem; it have been proved useful to form families of collaborat-
ing objects [11, 22], to develop scalable and extensible components
[23, 28, 25], to address the “expression problem”[13, 14, 5], and
so on. However, such nesting requires that each family becomes
a large monolithic program, thus implementations of all the mem-
bers of one family are placed in a single source file. Each member’s
implementation cannot be reused in the different context, and can-
not be developed in parallel. Furthermore, the implementation of
an enclosing class also depends on its enclosed classes.

To address this problem, a language with dependent classes [15]
that is a generalization of virtual classes [21] that expresses similar
semantics by parameterization rather than by nesting is proposed.
In this language, an instance of the enclosing class becomes a
formal parameter of a constructor of the enclosed class. However,
since the families are represented by objects, a dependent type
system has to be introduced, resulting in a rather complex type
system.

On the other hand, there are much simpler approaches [20, 30]
based not on virtual classes (attributes of objects) but on lightweight
family polymorphism (attributes of classes) [31]. In these ap-
proaches, the modularization is achieved by parameterizing each
member of family using type parameters, and their type systems
are built on top of FGJ[17]. The resulting type systems are sig-
nificantly simpler without losing much expressive power of the
languages. One problem of these approaches is verbosity of the
source programs; we have to declare a recursive type parameter
to parameterize each mutually recursive class within each class
declaration, and we have to declare a fixed-point class with empty
class body for each parameterized class. Therefore, even though
the underlying type system is simple, programs written in these
languages tend to be rather complex and hard to understand.

In this paper, we propose a language with lightweight dependent
classes, a class based simple solution without requiring a lot of
boilerplate code for type parameter lists and fixed-point classes.
The idea is to parameterize an enclosing class by using a type
parameter. In Java, we cannot select a nested class member on a
type parameter X; i.e., if there is a fully qualified name X.C, X
cannot be a type parameter. We show that by allowing X to be a type
parameter, the aforementioned problem is solved. The resulting
type system is a quite simple extension of generic Java [3, 17]
with significant expressive power. By using examples, we show
that the problem of verbosity is solved by adding quite lightweight
extension to Java 5.0 (syntactically, only the difference from the
original Java 5.0 is that we can access a nested class member on a
type parameter).

The same problem that the previous work faced also arises in
this work; in Java, the type of this is “hard-linked” to the enclos-
ing class [20, 30]. As discussed later, this hard-linking produces
compile errors which can be avoided if we give more precise type
to this. To tackle this problem, we define a type inference algo-

Figure 1. Overview of our example

rithm that infers the possible extension of type of this. With this
feature, the restriction imposed on the use of the expression this
is eased without losing the property of type safety. To carefully
investigate type soundness of our proposal, we develop X.FGJ, a
core calculus of lightweight dependent classes. This formalization
is built on top of FGJ and its type system is proved to be sound.

So far, our contributions are summarized as follows:

• We identify a minimum lightweight set of language constructs
that address the aforementioned problem of nesting without
introducing a lot of boilerplate code. The resulting language
is very similar to Java, one of the most popular mainstream
languages.

• We present a programming style to implement modular and
type-safe mutually recursive classes using the proposed lan-
guage, and discuss its abilities and limitations.

• We rigorously formalize the idea and prove its type soundness.

The rest of this paper is structured as follows. Section 2 de-
scribes the features of lightweight dependent classes, and how the
aforementioned problem is solved using this proposal. Section 3
explains some technical hot spots which have to be considered to
construct a safe type system. In section 4, we formalize the pro-
posed language features on top of FGJ, and show the proposal is
type sound. In section 5, we discuss how this work is related to
other researches. Finally, section 6 concludes this paper.

2. Programming Lightweight Dependent Classes
2.1 A Graph Example
We start by informally describing the main aspect of lightweight
dependent classes, the language construct we study in this paper. To
show how this construct is used to support modular and type-safe
mutually recursive extensions, we consider an example originally
presented in [11].

We illustrate this example in Fig. 1. This example features a
family (or group) Graph, containing the members of the family,
namely Node and Edge. In our example, each instance of Node
holds a reference to incident edges (instances of Edge), and each
edge holds references to its source and destination nodes. Thus, the
definitions of Node and Edge are mutually recursive.

Then, we extend Graph to WGraph adding the feature of setting
weight on each edge. In WGraph, the member Edge is refined to
store the weight of each edge. The member Node is also refined
to store a new property. This property may be color, or label etc.;
in Fig. 1, Node declares an abstract method value() to return an
integer value of this property. In our application, the weight of
an edge is calculated by using this property of the pair of nodes

class Graph<E extends Edge<E#G>,
N extends Node<E#G>> {

}

class Edge<G extends Graph<G#E,G#N>> {
G#N src, dst;
void connect(G#N s, G#N d) {
src = s; dst = d;
s.add(this); d.add(this);

}
}

class Node<G extends Graph<G#E,G#N>> {
Vector<G#E> es = new Vector<G#E>();
void add(G#E e) {
es.add(e);

}
}

class SimpleGraph
extends Graph<Edge<SimpleGraph>,

Node<SimpleGraph>> { }

Figure 2. A lengthy graph definition in Scalable Java [20]

connected by the edge. To do so, the connect method declared in
Edge is to be appropriately overridden.

2.2 Motivations
Even though this example is simple, there are many challenges.
At first, extending a set of classes that are mutually recursive is
very difficult in the existing object-oriented languages. In such
languages, mutually recursive classes refer to each other by their
names, thus different sets of mutually recursive classes necessarily
have different names, even though their structures are similar.

Considerable research efforts have been recently devoted to
solve this problem [8, 11, 23, 32, 31, 5, 26]. In family polymor-
phism, for example, like virtual methods, a reference to a nested
class member is resolved at run-time and thus the meaning of mu-
tual references to class names will change when a subclass of the
enclosing class is created and those member classes are inherited.
Since the semantics of each nested class member is not hard-linked
to the enclosing class, we may safely extend the mutually recursive
classes.

Although the family polymorphism approach is very powerful,
it has one shortcoming. Since mutually recursive classes are pro-
grammed as nested class members of a top-level class, each family
becomes a large monolithic program. Both definition of Edge and
Node is placed in the same source file. Therefore, it is hard to say
the family polymorphism approach is based on components. When
there are many kinds of Edge and Node, it will be convenient if we
can compose them freely in arbitrary combinations, but the family
polymorphism approach does not provide such a flexible way for
it. Therefore, we identify the following requirement:

Separation of members of family: Each member of family may
be placed in the separate source files from that of the family.

There are pieces of literature that address this requirement. For
example, dependent classes are generalizations of virtual classes
that expresses similar semantics by parameterization rather than by
nesting. On the other hand, much simpler solutions are indepen-
dently proposed [20, 30]. In these approaches, the decoupling of
members and families is achieved by parameterizing each member
of family by using a type parameter.

However, in these approaches there is a problem that a program
written in the language becomes verbose. For example, Figure 2
shows an implementation of the graph example written in Scalable
Java [20]. In this paper we do not intend the reader to understand
details of Scalable Java (G#E is the type parameter E declared in
(the upper bound of) type G). In Figure 2 we can see that the dec-
laration of Graph is parametrized by type parameters, and these
type parameters are recursively used in the constraints on these
type parameters. Recursive type parameters are also used in the
declarations of Edge and Node. This recursion makes the program
complex and hard to understand. Furthermore, to “fix” the recur-
sion, we have to create the fixed-point class SimpleGraph. Note
that SimpleGraph’s body is empty; it is created only for fixing the
recursion and provides no behaviors. Nevertheless, the program-
mer have to provide rather complex extends clause to complete
its declaration. Thus, declaring the recursive type parameters and
fixed-point classes with empty class body should be avoided.

Therefore, we also identify the following requirements:

Lightweight extension: We do not require a completely new pro-
gramming language. Furthermore, new language constructs that
are added to the existing language should be kept simple.

Readability: We do not require a lot of boilerplate code. Declaring
a lot of recursive type parameters and fixed-point classes is
undesirable.

Furthermore, as in the most modern typed programming lan-
guages, we also require the following properties:

Type safety: Extensions do not create run-time errors.

Modularity: Extensions do not require modification or recompila-
tion of the existing systems.

Non-destructive extension: Different extensions may co-exist in
the same system.

2.3 Solution
We show how our proposal, lightweight dependent classes, fulfills
the aforementioned requirements. The idea is to parameterize an
enclosing class by using a type parameter. This is a quite simple
extension of generic Java with significant expressive power. In
the following subsections, we show how this construct solves the
problems by examples.

2.3.1 Simple Graph Family
Figure 3 shows the definition of family Graph using lightweight
dependent classes. It declares two nested classes, Edge and Node,
whose implementations are separately provided in their super-
classes, EdgeI and NodeI, respectively1.

A class NodeI is a concrete implementation of Graph.Node,
and a class EdgeI is a concrete implementation of Graph.Edge.
Both of them are parameterized over its belonging family by type
parameter G, whose upper bound is Graph. NodeI declares an
instance variable es, which represents a set of incident edges with
which this node is connected. For the future extensibility, the type
of edge is not hard-linked to Graph.Edge; instead, it is declared
as G.Edge. Similarly, the type of instance variables src and dst in
EdgeI that represent source and destination nodes respectively, and
formal parameter types in connect are also declared as G.Node.

Each type parameter G is instantiated by Graph inside the body
of Graph itself. Note that, unlike Figure 2, we do not have to
declare any recursive type parameters (the class Graph is not
parametrized) and fixed-point classes with empty body.

1 In this paper, we omit any modifier lists such as public, static, and so
on for simplicity.

class Graph {
class Edge extends EdgeI<Graph> { }
class Node extends NodeI<Graph> { }

}

class EdgeI<G extends Graph> {
G.Node src, dst;
void connect(G.Node s, G.Node d) {

s.add(this); d.add(this);
src = s; dst = d;

}
}

class NodeI<G extends Graph> {
Vector<G.Edge> es = new Vector<G.Edge>();
void add(G.Edge e) {

es.add(e);
}

}

Figure 3. Simple graph definitions

class WGraph extends Graph {
class Edge extends WEdgeI<WGraph> { }
class Node extends RichNode<WGraph> { }

}

class WEdgeI<G extends WGraph>
extends EdgeI<G> {

int weight;
int f(G.Node s, G.Node d) {

int sv = s.value(); int dv = d.value();
... }

void connect(G.Node s, G.Node d) {
weight = f(s,d);
super.connect(s,d);

}
}

abstract class RichNode<G extends Graph>
extends NodeI<G> {

abstract int value();
}

Figure 4. Weighted graph extension

2.3.2 Extending the Base Family
Figure 4 shows the definition of family WGraph that is a subclass
of Graph. As in Graph, it also declares nested classes Edge and
Node. In this case, nested classes declared in a subclass override
nested classes declared in the superclass. Their superclasses are
covariantly refined to WEdgeI and RichNode, respectively.

WEdgeI is a concrete implementation of WGraph.Edge that
refines the definition of EdgeI. It declares an instance variable
weight that stores the weight of edges. Similarly, RichNode is an
abstract definition of WGraph.Node. It provides a method value()
that returns the property of the node. Both of them declare a type
parameter G whose upper bound is refined to WGraph. Since nested
classes of Graph are accessed through the type parameter in the
base classes (in the form of G.Node and G.Edge), in the subclasses,
we can also refer to each member of the extended family even
when declarations in the base classes are evaluated. For example, a
method connect declared in WEdgeI overrides connect declared

class ColorNode<G extends Graph>
extends RichNode<G> {

Color color;
int value() { ... }

}

class CWGraph extends WGraph {
class Edge extends WEdgeI<CWGraph> {}
class Node extends ColorNode<CWGraph> {}

}

Figure 5. Colored weighted graph

class LabelNode<G extends Graph>
extends RichNode<G> {

Label label;
int value() { ... }

}

class LWGraph extends WGraph {
class Edge extends WEdgeI<LWGraph> {}
class Node extends LabelNode<LWGraph> {}

}

Figure 6. Labeled weighted graph

in EdgeI, because each of formal parameter types is declared as
G.Node, and Node is appropriately overridden in WGraph.

To provide a complete implementation of WGraph, we have to
implement the abstract class RichNode. A colored weighted graph
implementation is shown in Figure 5. As in the case of Graph, we
do not have to introduce any other fixed-point classes.

Note that the upper bound of G declared in RichNode and
ColorNode is unchanged from that of G in NodeI, since both of
definitions do not use the properties introduced in WEdgeI. To
enhance reusability of each component, we do not unnecessarily
restrict their upper bounds, as discussed in the next section.

2.3.3 Another Combination of Extensions
In this section we show that our approach enables much flexible
composition as in [20]. Since each member is placed in a separate
class, we may implement many kinds of members, and we may
combine them as we want.

Figure 6 shows that there may be another implementation of
nodes in WGraph other than ColorNode, namely LabelNode,
which is also declared as a subclass of RichNode. The new fam-
ily LWGraph demonstrates that LabelNode is also safely com-
posed with WGraph. This modification is local to implementation
of nodes; since each implementation is provided in a separate class,
it does not affect development of other parts of the graph applica-
tion.

Furthermore, such extensions may also be used with the original
base Graph. For example, someone may require that there needs a
graph where each node is colored, but the weight feature on edges is
not needed. We may obtain such a graph by combining ColorNode
with Graph:

class CGraph extends Graph {
class Edge extends EdgeI<CGraph> {}
class Node extends ColorNode<CGraph> {}

}

3. Technical Hot Spots
So far, we have shown how lightweight dependent classes support
separation of members of family with quite simple extension of
generic Java. We do not have to declare any recursive type parame-
ters and fixed-point classes with empty class body, thus the result-
ing code is reasonably readable. The remaining important issue is
type safety. There are some challenges in making type system of
lightweight dependent classes sound. In this section, we overview
these challenges and how we tackle the problems.

3.1 Notes on Inheritance and Subtyping
In Figure 3 and 4, both classes Graph and WGraph declare nested
classes Node and Edge. How do the base class and the extended
class with the same name relate to each other? There are two
possibilities: WGraph.Node is a subclass (and thus a subtype) of
Graph.Node, or WGraph.Node is not a subclass (and not a sub-
type) of Graph.Node. If the former approach is taken, the type sys-
tem will not be safe. For example, consider the following demon-
stration code:

Graph.Node n1 = new Graph.Node();
Graph.Node n2 = new Graph.Node();
CWGraph.Edge e1 = new CWGraph.Edge();
Graph.Edge e2 = e1;
e2.connect(n1,n2); // error!

In this example, we connect two instances of Graph.Node, n1 and
n2. The type-checker accepts this code, since the static type of
e2 is Graph.Edge and the formal parameter types of connect on
Graph.Edge are compatible to Graph.Node. However, the actual
type of e2 is CWGraph.Edge, where the connect method is over-
ridden to call the value() method that is not provided by n1 and
n2.

Our language does not allow this subclassing; as in Java,
subclassing is a reflexive and transitive closure induced by the
extends clause, and no implicit subclassing are provided. How-
ever, this decision produces another subtlety. Consider that the
situation where Graph.Edge has a field Object f;. In this case,
a field access expression e.f, where e’s type is G.Edge and G is a
type parameter whose upper bound is Graph, is not always safe.

To tackle this problem, we take somewhat a drastic approach;
the body of nested classes must always be empty. We may distin-
guish a conventional nested or inner class from a nested class whose
implementation is provided in a separate class, by using an anno-
tation or a modifier indicating the annotated class is a conventional
nested class. However, to focus on the features we would like to
study in this paper, we only include nested classes whose body is
empty in the core calculus explained in section 4.

To ensure type safety, we also impose another restriction on
nested class declarations: when a nested class is overridden in a
subclass, the superclass of overriding nested class have to be a
subclass of that of overridden nested class; i.e., the definition of
nested classes must be covariantly refined.

3.2 Type Inference for this
As also discussed in [20] and [30], another subtlety exists in the
type of this. In Figure 3, for example, there seems to be a mis-
match between the expected type of this and its actual type. In
the semantics of Java, the type of this is its enclosing class. The
type of an argument for the method call s.add(this) in Figure
3 is therefore EdgeI<G>, where G is some subtype of Graph. On
the other hand, the formal parameter type of the add method is de-
clared as G.Edge, which is a subtype of EdgeI<G>; therefore, the
type of this in the method call s.add(this) is not compatible to
the declared type.

There are some well-known solutions to address such a prob-
lem. For example, we may introduce a new kind of types like My-
Type (also known as ThisType) [4, 7] to the language. Another
possible approach is to provide some means to programmers to ex-
plicitly declare the actual type of this, like the self type annotation
of Scala [28]. However, both of these approaches require significant
language extensions.

In this paper, we take another approach that is also taken in [20]
and [30]; using upper bounds of type parameter G, the actual type
of this may be inferred. For example, EdgeI is playing the role
of G.Edge in the class EdgeI, thus we can treat this as having
the type G.Edge. We informally describes type inference rules for
this as follows:

• If one of the type parameters, namely X, has an upper bound
that is a class that declares a nested class, namely E, whose
superclass is the enclosing class of X where X is instantiated
by the enclosing class of E, the type of this is X.E; i.e., in the
following class declaration,

class C<X extends D> { .. }

where

class D { .. class E extends C<D> {} ..}

the type of this inside C is X.E.
• Otherwise, the type of this is its enclosing class.

In the case of program shown in Figure 3, EdgeI declares a type
parameter G whose upper bound is Graph, and Graph declares a
nested class Edge whose superclass is EdgeI<Graph>. Therefore,
the type of this used inside EdgeI is inferred as G.Edge, which
is the formal parameter type of add method declared in NodeI 2.
Thus, the program shown in Figure 3 is safely type-checked.

There may be ambiguity in the above algorithm, since it is
possible that more than one type parameter can have the same upper
bound and thus multiple interpretations of type of this may be
possible; i.e., in Figure 3, there may be another type parameter in
EdgeI whose upper bound is also Graph. In this case, the type
inference algorithm does not proceed and type of this is always
interpreted as the enclosing class.

Note that if the superclass of the nested class is instantiated
by the subclass of the enclosing class, the first case of the type
inference rule is not applied. For example, if Graph is declared as
follows,

class Graph {
class Edge extends EdgeI<CWGraph> {}
class Node extends NodeI<CWGraph> {}

}

the type of this inside EdgeI is EdgeI<G>. If this property is not
held and the first case of the type inference is applied in the case
of the above declaration, the property of type safety is not ensured.
Actually, we can write the following unsafe program:

Graph.Edge e1 = new Graph.Edge();
Graph.Node n1 = new Graph.Node();
Graph.Node n2 = new Graph.Node();
e1.connect(n1,n2);

2 More precisely, we have to ensure that type parameter G used in EdgeI
and in NodeI are identical. For this purpose, we model the method lookup
on G.Node to search its superclass instantiated with type parameter G
(i.e. NodeI<G>), even though Node’s superclass in Graph is declared as
NodeI<Graph>. We develop this feature by appropriately defining the
upper bound of G.Node, which is discussed in section 4.

In this program, the expression e1.connect(n1,n2) reduces
to an expression n1.add(this) by substituting formal param-
eter s with n1. Since type of n1 is Graph.Node and its super-
class is EdgeI<CWGraph>, the formal parameter type of add is
CWGraph.Edge, while the type of this is inferred Graph.Edge,
and as explained in section 3.1, the two types are incompatible.
Therefore, we require that to apply the first rule of the inference,
the superclass of the nested class is instantiated exactly the same
class as the enclosing class.

3.3 Limitations
In our proposal, there exists one limitation. Since a graph concep-
tually consists of a set of nodes and a set of edges, someone would
like to store a set of nodes in a graph instance. For example, one
may change the definition of Graph as follows:

class Graph {
class Edge extends EdgeI<Graph> {}
class Node extends NodeI<Graph> {}
Vector<Node> ns = new Vector<Node>();
void add(Node n) { ns.add(n); }

}

Unfortunately, field ns and method add in the above code cannot
be used for the refined Node definition in the subclass of Graph,
since any accesses to type Node inside Graph is hard-linked to
Graph.Node:

CWGraph g = new CWGraph();
CWGraph.Node n1 = new CWGraph.Node();
g.add(n1); // compile error!

In the above code, the type of expression n1 is CWGraph.Node,
while g.add expects Graph.Node, and as explained in the previous
section, these types are not compatible.

The same limitation also exists in lightweight family polymor-
phism [31], where an access to a relative path type is prohibited in
a top-level class. Interestingly, FGJ# [20] does not suffer from this
limitation, since in FGJ#, any accesses to Node (and Edge) may be
parameterized by using type parameters, which are finally fixed in
a fixed-point class.

Nevertheless, it is still possible to create another class in the
family that maintains the list of Nodes. For example, we may mod-
ify the declaration of Graph so that it includes a wrapper for the
container of Node whose implementation is separately provided:

class Graph {
class Edge extends EdgeI<Graph> {}
class Node extends NodeI<Graph> {}
class Nodes extends NodesI<Graph> {}

}
class NodesI<G extends Graph> {
Vector<G.Node> ns = new Vector<G.Node>();
void add(G.Node n) { ns.add(n); }

}

In this setting, the following pieces of code can safely be compiled
and raise no run-time errors:

CWGraph g = new CWGraph();
CWGraph.Node n1 = new CWGraph.Node();
CWGraph.Nodes ns = new CWGraph.Nodes();
ns.add(n1);

4. X.FGJ: A Tiny Core of Lightweight Dependent
Classes

In this section, we formalize the ideas described in the previous
sections as a small calculus named X.FGJ, built on top of Feath-

Syntax:

T ::= X | N | X.C | N.C
N ::= C<T̄>
A ::= N | N.C
L ::= class C<X̄ � N̄>�N { T̄ f̄; K M̄ Ī}
K ::= C(T̄ f̄) { super(f̄); this.f̄=f̄; }
M ::= <X̄ � N̄> T m(T̄ x̄) { return e; }
I ::= class C � N {}
e ::= x | e.f | e.m<T̄>(ē) | new A(ē) | (N)e

Subclassing:

C � C
C � D D � E

C � E

class C<X̄ � N̄>�D<T̄>{...}
C � D

class E<X̄ � N̄>�N{.. class D�F<S̄>{} ..} C � E

C<T̄>.D � F

Figure 7. X.FGJ syntax and subclassing

erweight GJ (FGJ) [17], a functional core of class-based object-
oriented languages with the feature of generics.

4.1 Syntax
The abstract syntax of X.FGJ is given in Figure 7. The metavari-
ables T, S, V, and U range over types; X, Y, Z, and W range over type
variables; N, P, and Q range over nonvariable types; A ranges over
instantiatable types; C, D, E and F range over class names; L ranges
over class declarations; K ranges over constructor declarations; M
ranges over method declarations; I ranges over nested class dec-
larations; f and g range over field names; m ranges over method
names; x and y range over variables; e and d range over expres-
sions.

We write f̄ as a shorthand for a possibly empty sequence
f1 · · · fn, and M̄ as a shorthand for M1 · · · Mn. Furthermore, we
abbreviate pairs of sequences in a similar way, writing “T̄ f̄” as a
shorthand for “T1 f1,...,Tn fn,” “this.f̄=f̄;” as a shorthand
for “this.f1=f1;...;this.fn=fn;”, “X̄� N̄” as a shorthand for
“X1 � N1, · · · , Xn � Nn”, and so on. We write the empty sequence
as · and the length of sequence f̄ as #(f̄). Sequences of type vari-
ables, field declarations, parameter names, and method declarations
are assumed to contain no duplicate names.

As in FGJ, we abbreviate the keyword extends to the symbol
�. We assume that the set of variables includes the special variable
this, which is considered to be implicitly bound in every method
declaration. X.FGJ supports polymorphic methods, and type pa-
rameters for generic method invocation is explicitly provided with
the form e.m<T̄>(ē). A class must declare only one constructor
that initializes all the fields of that class. A constructor declaration
is only the place where assignment operator is allowed; once ini-
tialized, an instance never change its state. Method body consists of
single return statement. Thus, X.FGJ is a purely functional calcu-
lus.

Subclassing in X.FGJ, also shown in Figure 7, represented by
the relation C � D between class names is a reflexive and transitive
closure induced by the clause C<X̄ � N̄> � D<T̄>.

An X.FGJ program is a pair (CT ,e) of a class table CT and
an expression e. A class table is a map from class names to class
declarations. The expression e may be considered as the main
method of the real SJ program. We assume that a class Object has

no members and its definition does not appear in the class table.
The class table is assumed to satisfy the following conditions: (1)
CT (C) = class C ... for every C ∈ dom(CT); (2) Object 6∈
dom(CT); (3) C ∈ dom(CT) for every class name appearing in
ran(CT); (4) there are no cycles in subclass relation induced by
CT .

In the induction hypothesis shown below, we abbreviate CT (C) =
class C ... as class C

4.2 Auxiliary definitions
For the typing and reduction rules, we need a few auxiliary defini-
tions, given in Figure 8 and 9. The function fields(N) is a sequence
T̄ f̄ of field types and names declared in N. Application of type sub-
stitution [T̄/X̄] is defined in the customary manner. For example, we
write [T̄/X̄]T0 for the type obtained from T0 by replacing X1 with
T1, · · · , and Xn with Tn. We write C 6∈ Ī to mean that the nested
class definition of the name C is not included in Ī. The type of the
method invocation m at N, written mtype(m,N), is a type of the form
<X̄ � N̄>Ū → U. We write m 6∈ M̄ to mean that the method definition
of the name m is not included in M̄. The body of the method invoca-
tion m at N, written mbody(m,N), is a pair, written x̄.e, of a sequence
of parameters x̄ and an expression e.

Type inference rules for this is shown in Figure 9. The function
thistype returns the inferred type of this using the upper bounds
of type parameters. We assume that the second rule is applied only
when the first rule does not hold.

4.3 Typing
An environment Γ is a finite mapping from variables to types,
written x̄ : T̄. A type environment ∆ is a finite mapping from
type variables to nonvariable types, written X̄<:N̄. As defined in
Figure 10, we write bound∆(T) for an upper bound of T in ∆.
Besides type parameters and nonvariable types, we also need to
define bound∆ of nested class type T.D. Note that the upper bound
of T.D is its superclass, since the body of nested class is always
empty. Furthermore, there is a special case for nested class type D
on type variable X: X.D. In this case, if the upper bound of X appears
in the type argument list of D’s superclass, it is replaced with
X. This replacement is necessary to ensure that type substitution
preserves typing, because variance subtyping is not allowed for
generic classes. We assume that the fourth rule is applied only when
the third rule does not hold.

The subtyping relation ∆ ` S <: T, read “S is a subtype of
T in ∆,” is also defined in Figure 10. As in FGJ, subtyping is the
reflexive and transitive closure of the extends relation. Note that
these subtyping rules ensure that a nested class type T.D is not a
super type of any types other than itself.

We write ∆ ` T ok if a type T is well formed in context ∆. The
rules for well-formed types appear in Figure 11. A type C<T̄> is
well formed if a class declaration that begins with class C<X̄� N̄>
exists in CT , substituting T̄ for X̄ respects the bounds N̄, and all of
T̄ are ok. A nested class type T.D is well-formed if the path type T
is ok and the nested class D is declared in some super class of upper
bound of T.

We say that a type environment ∆ is well-formed if ∆ ` ∆(X)
ok for all X in dom(∆). We also say that an environment Γ is well-
formed with respect to ∆, written ∆ ` Γ ok, if ∆ ` Γ(x) ok for
all x in dom(Γ).

Figure 11 also shows a rule that indicates the condition of valid
overriding of nested classes, override(D, N, P, ∆). This condition is
true if there exists a super type of N.D in environment ∆, it must
be a super type of P. Another rule is for covariant overriding on the
method result type, which is ensured by override(m, N, <Ȳ� P̄>T̄ →
T0).

Field lookup:

fields(Object) = · (F-OBJECT)

class C<X̄ � N̄>�N {S̄ f̄; K M̄ Ī} fields([T̄/X̄]N) = Ū ḡ

fields(C<T̄>) = Ū ḡ, [T̄/X̄]S̄ f̄
(F-CLASS)

class C<X̄ � N̄>�N {.. class D�P {} ..}
fields(C<T̄>.D) = fields([T̄/X̄]P)

(F-NEST)

class C<X̄ � N̄>�N {.. Ī } D 6∈ Ī

fields(C<T̄>.D) = fields(N.D)
(F-NEST-SUPER)

Method type lookup:

class C<X̄ � N̄>�N {S̄ f̄; K M̄ Ī}
<Ȳ � P̄> U m(Ū x̄) { return e; } ∈ M̄

mtype(m, C<T̄>) = [T̄/X̄](<Ȳ � P̄>Ū → U)
(MT-CLASS)

class C<X̄ � N̄>�N {S̄ f̄; K M̄ Ī} m 6∈ M̄

mtype(m, C<T̄>) = mtype(m, [T̄/X̄]N)
(MT-SUPER)

class C<X̄ � N̄>�N {.. class D�P {} ..}
mtype(m, C<T̄>.D) = mtype(m, [T̄/X̄]P)

(MT-NEST)

class C<X̄ � N̄>�N {.. Ī } D 6∈ Ī

mtype(m, C<T̄>.D) = mtype(m, N.D)
(MT-NEST-SUPER)

Method body lookup:

class C<X̄ � N̄>�N {S̄ f̄; K M̄ Ī}
<Ȳ � P̄> U m(Ū x̄) { return e0; } ∈ M̄

mbody(m<V̄>, C<T̄>) = x̄.[T̄/X̄, V̄/Ȳ]e0

(MB-CLASS)

class C<X̄ � N̄>�N {S̄ f̄; K M̄ Ī} m 6∈ M̄

mbody(m<V̄>, C<T̄>) = mbody(m<V̄>, [T̄/X̄]N)
(MB-SUPER)

class C<X̄ � N̄>�N {.. class D�P {} ..}
mbody(m<V̄>, C<T̄>.D) = mbody(m<V̄>, [T̄/X̄]P)

(MB-NEST)

class C<X̄ � N̄>�N {.. Ī } D 6∈ Ī

mbody(m<V̄>, C<T̄>.D) = mbody(m<V̄>, N.D)
(MB-NEST-SUPER)

Figure 8. X.FGJ lookup functions

class C<X̄ � N̄>�N{..} Ni = D<S̄>
class D<Ȳ � P̄>�P{.. class E�C<Ū>{} ..} Ui = D<S̄>

∀j, j 6= i, Nj 6= D<S̄> ∀k, k 6= i, Uk 6= D<S̄>

thistype(C<T̄>) = Ti.E

class C<X̄ � N̄>�N{..}
thistype(C<T̄>) = C<T̄>

Figure 9. Type inference for this

Bound of type:

bound∆(X) = ∆(X)

bound∆(C<T̄>) = C<T̄>

bound∆(X) = C<T̄>
class C<X̄ � N̄>�N{.. class D�E<S̄, C<T̄>, Ū>{}..}

bound∆(X.D) = E<S̄, X, Ū>

bound∆(T) = C<T̄>
class C<X̄ � N̄>�N{.. class D�P{} ..}

bound∆(T.D) = P

bound∆(T) = C<T̄>
class C<X̄ � N̄>�N{.. Ī} D 6∈ Ī

bound∆(T.D) = bound∆(N.D)

Subtyping:
∆ ` T <: T

(S-REFL)
∆ ` X <: ∆(X)

(S-VAR)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
(S-TRANS)

class C<X̄ � N̄>�N {...}
∆ ` C<T̄> <: [T̄/X̄]N

(S-CLASS)

class C<X̄ � N̄>�N {.. class D�P {} ..} E � C

∆ ` E<T̄>.D <: [T̄/X̄]P
(S-DOT)

Figure 10. X.FGJ subtyping rules

Typing require another additional auxiliary definition. The re-
duction R(T) of T is defined in Figure 12. The only interesting case
is for N.C (the first and the second rules), which determines which
class provides the implementation of the (empty) nested class. Oth-
erwise, R behaves as an identity function.

Typing rules for expressions, methods, and classes are defined
in Figure 13. The typing judgment for expressions is of the form
∆; Γ ` e : T, read as “under the type environment ∆ and the
environment Γ, the expression e has type T.” The typing rules are
syntax directed, with one rule for each form of expression, save that
there are three rules for typecasts. As in FGJ, in the rule T-DCAST,

Well-formed types:

∆ ` Object ok (WF-OBJECT)

X ∈ dom(∆)

∆ ` X ok
(WF-VAR)

class C<X̄ � N̄>�N {...} ∆ ` T̄ ok ∆ ` T̄ <: [T̄/X̄]N̄

∆ ` C<T̄> ok
(WF-CLASS)

class C<X̄ � N̄>�N {.. class D�P {} ..}
bound∆(T) = E<T̄> ∆ ` T ok E � C

∆ ` T.D ok
(WF-DOT)

Valid downcast:

dcast(C, D) dcast(D, E)
dcast(C, E)

class C<X̄ � N̄>�D<T̄> {...}
X̄ = FV (T̄)

dcast(C, D)

(FV (T̄) denotes the set of type variables in T̄)

Valid nested class overriding:

∀C, ∆ ` N.D � C implies ∆ ` P � C

override(D, N, P, ∆)

Valid method overriding:

mtype(m, N) = <Z̄ � Q̄>Ū → U0 implies
P̄, T̄ = [Ȳ/Z̄](Q̄, Ū) and Ȳ<:P̄ ` T0 <: [Ȳ/Z̄]U0

override(m, N, <Ȳ � P̄>T̄ → T0)

Figure 11. X.FGJ type well-formedness rules

class C<X̄ � N̄>�N{.. class D�P {} ..}
R(C<T̄>.D) = P

class E<X̄ � N̄>�N{.. Ī } D 6∈ Ī

R(E<T̄>.D) = R(N.D)

R(X.C) = X.C

R(N) = N

R(X) = X

Figure 12. Reduction of types

Expression typing:

∆; Γ ` x : Γ(x) (T-VAR)

∆; Γ; C ` e0 : T0 fields(bound∆(R(T0))) = T̄ f̄

∆; Γ ` e0.fi : R(Ti)
(T-FIELD)

mtype(m, bound∆(R(T0))) = <Ȳ � P̄>Ū → U
∆; Γ ` e0 : T0 ∆ ` V̄ ok ∆ ` V̄ <: [V̄/Ȳ]P̄

∆; Γ ` ē : S̄ ∆ ` S̄ <:R([V̄/Ȳ]Ū)

∆; Γ ` e0.m<V̄>(ē) : R([V̄/Ȳ]U)
(T-INVK)

∆ ` A ok fields(A) = T̄ f̄
∆; Γ ` ē : S̄ ∆ ` S̄ <:R(T̄)

∆; Γ ` new A(ē) : A
(T-NEW)

∆; Γ ` e0 : T0 ∆ ` bound∆(T0) <: N

∆; Γ ` (N)e0 : N
(T-UCAST)

∆; Γ ` e0 : T0 ∆ ` N ok ∆ ` N <: bound∆(T0)
N = C<T̄> bound∆(T0) = D<Ū> dcast(C, D)

∆; Γ ` (N)e0 : N
(T-DCAST)

∆; Γ ` e0 : T0 ∆ ` N ok
N = C<T̄> bound∆(T0) = D<Ū>
C 5 D D 5 C stupid warning

∆; Γ ` (N)e0 : N
(T-SCAST)

Method typing:

∆ = X̄<:N̄, Ȳ<:P̄ ∆ ` T̄, T, P̄ ok
∆; x̄ : T̄, this : thistype(C<X̄>) ` e0 : S ∆ ` S <: T

class C<X̄ � N̄>�N {...} override(m, N, <Ȳ � P̄>T̄ → T)

<Ȳ � P̄> T m(T̄ x̄) { return e0; } OK IN C<X̄ � N̄>
(T-METHOD)

Nested class typing:

class C<X̄ � N̄>�N {.. class D�P {} ..}
X̄<:N̄ ` P ok override(D, N, P, X̄<:N̄)

class D�P {} OK IN C<X̄ � N̄>
(T-NEST)

Class typing:

X̄<:N̄ ` N̄, N, T̄ ok fields(N) = Ū ḡ M̄ OK IN C<X̄ � N̄>
K = C(Ū ḡ, T̄ f̄) {super(ḡ); this.f̄=f̄;}

Ī OK IN C<X̄ � N̄>

class C<X̄ � N̄>�N {T̄ f̄; K M̄ Ī} OK
(T-CLASS)

Figure 13. X.FGJ typing rules

Computation:

fields(A) = T̄ f̄

(new A(ē)).fi −→ ei
(R-FIELD)

mbody(m<V̄>, A) = x̄.e0

(new A(ē)).m<V̄>(d̄) −→ [d̄/x̄, new A(ē)/this]e0

(R-INVK)

∅ ` N <: P

(P)(new N(ē)) −→ new N(ē)
(R-CAST)

Congruence:

e0 −→ e′0

e0.f −→ e′0.f
(RC-FIELD)

e0 −→ e′0

e0.m<T̄>(ē) −→ e′0.m<T̄>(ē)
(RC-INV-RECV)

ei −→ e′i

e0.m<T̄>(...,ei,...) −→ e0.m<T̄>(...,e
′
i...)

(RC-INV-ARG)

ei −→ e′i

new A(...,ei,...) −→ new A(...,e′i,...)
(RC-NEW-ARG)

e0 −→ e′0

(T)e0 −→ (T)e′0
(RC-CAST)

Figure 14. X.FGJ reduction rules

dcast(C,D) defined in Figure 11 ensures that the result of the cast
will be the same at runtime.

The typing judgment for method declarations, which has the
form M OK IN C, read “method declaration M is ok when it occurs
in class C,” uses the expression typing judgment on the body of the
method, where the free variables are the parameters of the method
with their declared types and the special variable this. The type of
this is inferred by using function thistype. Covariant overriding of
methods on the method result type is also allowed in X.FGJ.

The typing judgment for class declarations, which has the form
C OK, read “class declaration C is ok,” checks that the constructor
is well-defined, each method declaration in the class is ok, and each
nested class declaration is ok.

A class table CT is OK if all its definitions are OK.

4.4 Reduction
The operational semantics of X.FGJ is defined with the reduction
relation that is of the form e −→ e′, read “expression e reduces
to expression e′ in one step.” We write −→∗ for the reflexive and
transitive closure of −→.

The reduction rules are given in Fig. 143. There are three reduc-
tion rules, one for field access, one for method invocation, and one
for casting. The field access reduces to the corresponding argument
for the constructor. The method invocation reduces to the expres-

3 As in the original FJ, X.FGJ uses the non-deterministic reduction strategy.

sion of the method body, substituting all the parameter x̄ with the
argument expression d̄ and the special variable this with the re-
ceiver. We write [d̄/x̄, ē/ȳ]e0 for the expression obtained from e0

by replacing x1 with d1,...,xn with dn, and y with e.

4.5 Properties
We show that X.FGJ’s type system is sound with respect to the
operational semantics. Type soundness is proved in the standard
manner via subject reduction and progress [33, 17].

THEOREM 4.1 (Subject Reduction). If ∆; Γ ` e : T and e −→
e′, then ∆; Γ ` e′ : T′ for some T′ such that ∆ ` T′<:T.

Proof sketch. We can prove the theorem by firstly proving the facts
that type substitution preserves typing and term substitution pre-
serves typing. The former’s proof is almost identical to that of the
corresponding lemma appearing in [17] using the fact that the defi-
nition of nested classes are covariantly refined. The latter’s proof is
also similar to those of the corresponding lemmas appearing in [17]
and [31]. Then, we can prove that if mtype(m, A) = <Ȳ� P̄>Ū → U
and mbody(m<V̄>, A) = x̄.e0 where ∆ ` A ok and ∆ ` V̄ ok
and ∆ ` V̄<:[V̄/Ȳ]P̄, then there exist some C<T̄> and S such that
A � C and ∆ ` C<T̄> ok and ∆ ` S<:[V̄/S̄]U and ∆ ` S ok and
∆; x̄ : [V̄/Ȳ]Ū, this : thistype(C<T̄>) ` e0 : S by induction on the
derivation of mbody(m<V̄>, A) = x̄.e0, and if ∆; x̄ : T̄ ` e : T,
then ∆; x̄ : R(T̄) ` e : R(T) by induction on the derivation of
∆; Γ, x̄ : T̄ ` e : T.

With these facts, we can prove the subject reduction by induc-
tion on the derivation of ∆; Γ ` e : T with case analysis on the last
rule used. We only show the case of T-INVK.

Case T-INVK: e = new A0(ē).m<V̄>(d̄)
e′ = [d̄/x̄, new A0(ē)/this]e0

mbody(m<V̄>, A0) = x̄.e0

By T-INVK and T-NEW, we have

∆; Γ ` new A0(ē) : A0 ∆; Γ ` e : U
mtype(m, A0) = <Ȳ � P̄>Ū → U ∆ ` V̄ ok
∆ ` V̄<:[V̄/Ȳ]P̄ ∆; Γ ` d̄ : S̄
∆ ` S̄<:[V̄/Ȳ]Ū.

There exists some C<T̄> and S such that
A0 � C ∆ ` C<T̄> ok
∆ ` S ok ∆ ` S<:[V̄/Ȳ]U
∆; x̄ : [V̄/Ȳ]Ū, this : thistype(C<T̄>) ` e0 : S.

Then, we have

∆; x̄ : R([V̄/Ȳ]Ū), this : R(thistype(C<T̄>)) ` e0 : R(S).

Finally, it is easy to show that ∆ ` A0<:R(thistype(C<T̄>)) pro-
vided that A0 � C, and ∆ ` R(S)<:S, finishing the case. 2

THEOREM 4.2 (Progress). Suppose e is a well-typed expression.

1. If e includes new A0(ē).f as a subexpression, then fields(A0) =
T̄ f̄ and f ∈ f̄ for some T̄ and f̄.

2. If e includes new A0(ē).m<V̄>(d̄) as a subexpression, then
mbody(m<V̄>, A0) = x̄.e0 and #(x̄) = #(d̄) for some x̄ and
e0.

Proof. Easy. 2

To state X.FGJ type soundness formally, we give the definition
of X.FGJ value below:

v ::= new A(v̄)

THEOREM 4.3 (X.FGJ Type Soundness). If ∅; ∅ ` e : T and
e −→∗ e′ with e′ a normal form, then e′ is either (1) an X.FGJ

value v with ∅; ∅ ` v : S and ∅ ` S<:T or (2) an expression
containing (P)new A(ē) where ∅ ` A<:P.

Proof. Immediate from theorem 4.1 and 4.2. 2

We may also show that if an expression e is cast-safe in ∆; Γ
(i.e. the type derivations of the underlying CT and ∆; Γ ` e : T
do not use T-DCAST and T-SCAST rules), it does not produce any
typecast errors.

THEOREM 4.4. If e is cast-safe in ∅; ∅ and e −→∗ e′ with e′ a
normal form, then e′ is a value v.

Proof. Straightforward. 2

5. Related Work
Lightweight dependent classes partially support family polymor-
phism [11, 31]. The difference is, while the original family poly-
morphism uses the same name as each member of the original fam-
ily to that of the extended family, in our approach, we have to invent
new names for superclass of members in the extended family. On
the other hand, in our approach, each member of family may be
placed in a separate source file.

Originally, nested classes in family polymorphism are members
of an object, thus the language essentially involves a dependent
type system. On the other hand, based on the observation given
by [19], Igarashi et al. propose a much simpler variant of family
polymorphism, in which families are identified with classes[31].
Even though this approach sacrifices some important features of the
original family polymorphism (e.g. each member of family may not
access the instance of the enclosing class), the resulting calculus is
quite compact and reasonably expressive. Our approach is similar
to this approach, in that type parameter members are also static
members of enclosing class. There are also some other related work
on family polymorphism: [23, 25, 29, 16, 8, 5].

Virtual classes[21, 18, 14], also known as path-dependent types
[12, 28], are also closely related to this direction of research. In vir-
tual classes, classes are declared as fields of (enclosing) classes and
they are referred from the outside of class declarations as instance
variables. Our idea of parameterizing the enclosing class using a
type parameter is analog of the dependent classes’ idea of parame-
terizing the enclosing object using a constructor’s parameter.

Besides path-dependent types, Scala[28] also supports symmet-
ric mixin compositions and self-type annotations. Self-type anno-
tations allow us to explicitly declare the type of this. With these
features, our programming style where members of families may be
placed in separate source files is possible in Scala. Actually, Scala
has much expressive power that lightweight dependent classes do
not support. On the other hand, lightweight dependent classes are
quite simple extension of Java 5.0 that has reasonable expressive
power.

MyType (or sometimes called ThisType) is also studied to solve
the mismatching problem of recursive class definitions [6, 7]. My-
Type is the type of this and changes its meaning along the inheri-
tance chain. Lately, this idea is extended to mutually recursive class
definitions[8, 5] by introducing constructs to group mutually recur-
sive definitions. These approaches are similar to us in the sense that
dependent types are not used. However, like other approaches, the
resulting group will be a large monolithic program. Another im-
portant difference is, in these pieces of work, covariant subtyping
of members is allowed. To ensure type safety, they introduce the
notion of exact types and allow to invoke a method that takes an
argument of the same family only when the receiver’s family is ex-
actly known.

Our approach is based on generic Java (and thus on Java 5.0),
but there are other extensive researches on adding genericity to

Java [27, 9, 2, 1]. How the result of this paper is integrated with
these languages is not considered in this paper and worth pursuing.
For example, [2] supports mixin inheritance by parameterization of
superclass, which is not studied in this paper.

6. Concluding Remarks
We have proposed a language with lightweight dependent classes,
an extension of generic Java where access to nested class members
on type parameters is allowed. With this feature, we can parameter-
ize the enclosing class by using type parameters, and separation of
members and families is achieved. With the mechanism of type in-
ference of this, mutually recursive classes can be safely extended
without modifying existing source code. The resulting language is
a quite simple extension of generic Java, and we do not have to
declare a log of recursive type parameters and fixed-point classes
with empty class body, which were required in some pieces of pre-
vious work. The core language X.FGJ ensures type soundness of
the proposed language.

One remaining important issue is implementation. We believe
that the idea can be implemented by adopting (an extension of)
erasure of type parameters that is used in the implementation of
generic Java. We are planning to implement the language using
extensible Java compilers [24, 10]. Empirical studies on how the
language can be used to refactor some industrial systems are also
worth pursuing.

Acknowledgments. We thank Atsushi Igarashi and all the mem-
bers of Kumiki2.0 project for helpful comments and fruitful dis-
cussion on language design in this paper. This work is supported
in part by Grant-in-Aid for Scientific Research No.18200001 and
Grant-in-Aid for Young Scientists (B) No.20700022 from NEXT
of Japan.

References
[1] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type

parameterization to the Java language. In OOPSLA’97, Atlanta, pages
49–65. ACM, 1997.

[2] Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-class
approach to genericity. In OOPSLA’03, pages 96–114, 2003.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In OOPSLA’98, pages 183–200, 1998.

[4] Kim Bruce, Angela Schuett, Robert van Gent, and Adrian Fiech.
PolyTOIL: A type-safe polymorphic object-oriented language. ACM
TOPLAS, 25(2):225–290, 2003.

[5] Kim B. Bruce. Some challenging typing issues in object-oriented
languages. Electronic Notes in Theoretical Computer Science, 82(8),
2003.

[6] Kim B. Bruce, Adrian Fiech, and Leaf Peterson. Subtyping is not a
good “match” for object-oriented languages. In ECOOP’97, volume
1241 of LNCS, pages 104–127, 1997.

[7] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into
Java. In ECOOP’04, volume 3086 of LNCS, pages 389–413, 2004.

[8] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe
alternative to virtual types. In ECOOP’98, volume 1445 of LNCS,
pages 523–549, 1998.

[9] Robert Cartwright and Jr. Guy L. Steele. Compatible genericity with
run-time types for the Java programming language. In OOPSLA’98,
pages 201–215, 1998.

[10] Torbjorn Ekman and Gorel Hedin. The JastAdd extensible Java
compiler. In OOPSLA’07, pages 1–18, 2007.

[11] Eric Ernst. Family polymorphism. In ECOOP’01, volume 2072 of
LNCS, pages 303–327, 2001.

[12] Erik Ernst. Propagating class and method combination. In
ECOOP’99, volume 1628 of LNCS, pages 67–91. Springer-Verlag,
1999.

[13] Erik Ernst. Higher-order hierarchies. In ECOOP’01, volume 2743 of
LNCS, pages 303–326, 2003.

[14] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class
calculus. In Proceedings of 33th ACM Symposium on Principles of
Programming Languages (POPL), pages 270–282, 2006.

[15] Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Dependent
classes. In OOPSLA’07, pages 133–151, 2007.

[16] Stephan Hermann. Object Teams – improving modularity for
crosscutting collaborations. In Net Object Days 2002, volume 2591
of LNCS, 2002.

[17] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. ACM TOPLAS,
23(3):396–450, 2001.

[18] Atsushi Igarashi and Benjamin C. Pierce. Foundations for virtual
types. Information and Computation, 175(1):34–49, 2003.

[19] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: Concord. In ECOOP Workshop
on Formal Techniques for Java-like Programs (FTfJP 2004), 2004.

[20] Tetsuo Kamina and Tetsuo Tamai. Lightweight scalable components.
In GPCE’07, pages 145–154, 2007.

[21] Ole Lehrmann Madsen and Birger Moller-Pdersen. Virtual classes:
A powerful mechanism in object-oriented programming. In
OOPSLA’89, pages 397–406, 1989.

[22] Mira Mezini and Klaus Ostermann. Integrating independent
components with on-demand remodularization. In OOPSLA’02,
pages 52–67, 2002.

[23] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. In OOPSLA’04, pages 99–115,
2004.

[24] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Proceedings
of 12th International Conference on Compiler Construction, volume
2622 of LNCS, pages 138–152, 2003.

[25] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested
intersection for scalable software composition. In OOPSLA’06, pages
21–35, 2006.

[26] Martin Odersky, Vincent Cremet, Christine Rockl, and Matthias
Zenger. A nominal theory of objects with dependent types. In
ECOOP’03, volume 2743 of LNCS, pages 201–224, 2003.

[27] Martin Odersky and Philip Wadler. Pizza into Java: Translation theory
into practice. In ACM Symposium on Principles of Programming
Languages (POPL), pages 146–159, 1997.

[28] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In OOPSLA’05, pages 41–57, 2005.

[29] Klaus Ostermann. Dynamically composable collaborations with
delegation layers. In ECOOP’02, volume 2374 of LNCS, pages
89–110, 2002.

[30] Chieri Saito and Atsushi Igarashi. The essence of lightweight family
polymorphism. In FTfJP, pages 27–41, 2007.

[31] Chieri Saito, Atsushi Igarashi, and Mirko Viroli. Lightweight family
polymorphism. Journal of Functional Programming, 18(3):285–331,
2008.

[32] Kresten Krab Thorup and Mads Torgersen. Unifying genericity:
Combining the benefits of virtual types and parameterized classes. In
ECOOP’99, volume 1628 of LNCS, pages 186–204, 1999.

[33] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38–94, 1994.

