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Abstract
Software is often constructed as a stack of layers where a sublayer
extends its superlayer. Such extension of layers requires extension
of mutually recursive classes that form a layer. Furthermore, a class
within a layer often inherits from another class within the same
layer, and this inheritance relation is preserved in the sublayer.
Supporting these features in a type-safe object-oriented languages
imposes many challenges to us, and this issue has attracted many
researchers. One problem of constructing a layer is that it can be a
large monolithic module, thus a mechanism of decomposition of a
large layer is required. We propose a programming language that
supports decomposition of layers, which works even when a class
within a layer inherits from another class within the same layer and
thus supports extension of inheritance relations. This language is a
very small extension of our previous work “lightweight dependent
classes,” thus this is a lightweight extension of Java. The language
is formalized as a small calculus.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-Oriented Programming; D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Languages

Keywords Family polymorphism, Generics, Lightweight depen-
dent classes, Type system, Featherweight Java

1. Introduction
Software is often constructed as a stack of layers where a sublayer
extends its superlayer [4–6, 26, 36]1. Such extension of layers
requires extension of mutually recursive classes that form a layer,
and to support this feature in a type-safe object-oriented languages
imposes many challenges to us, thus considerable research efforts
such as family polymorphism and similar technologies have been
proposed [8, 9, 11, 19, 27–29, 35, 38]. Furthermore, a class within
a layer often inherits from another class within the same layer. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

1 Throughout this paper, we use the term “layer” in a consistent way with
that in mixin layers [36]. A layer is a group of closely related classes, and
sublayers can extend the functionality of superlayers.

nested inheritance, which extends the inheritance relation within a
layer to its sublayer, has been known as useful in many applications
such as programming language processors[19, 27, 28].

One problem of constructing a layer is that it can be a large
monolithic module. Each class implementation within a layer can-
not be reused in other layers, and a layer cannot be composed from
reusable smaller modules. Many efforts have been devoted to ad-
dress this problem [15, 22, 23]. For example, in dependent classes
[15], an instance of the layer becomes a formal parameter of the
constructor of the enclosed classes. Likewise, we have also pro-
posed language constructs that allow parametrization of a layer,
which is not achieved by the parametrization of the constructor of
enclosed class but the parametrization of class declaration by us-
ing type parameters. In these pieces of work, each inner class can
be decomposed from its enclosing layer but type-safe extension of
mutually recursive classes is possible.

However, these mechanisms do not work in the presence of
inheritance within a layer. For example, in our previous work
lightweight dependent classes [23], in the extended layer, each
inner class explicitly inherits from the corresponding class of the
original layer. Since it is not allowed to inherits from multiple
classes, the inner class cannot extend another class of the same
layer.

In this paper, we propose a programming language that supports
decomposition of layers, which works even when a class within a
layer inherits from another class within the same layer and thus
supports extension of inheritance relations. This language is a very
small extension (or modification) of our previous work lightweight
dependent classes. In this proposal, in the extends clause that
specifies the superclass, we can use a type like L.Expr, where L is
a type parameter and Expr is an inner class that can be accessed on
L. Since the layer is parametrized, the actual superclass is resolved
at the layer composition time. Thus the inheritance relation can be
changed with respect to the layer composition so that extension
of inheritance relation is supported. The language is formalized as
a small calculus based on Featherweight Java (FJ) [17], but this
formalization is almost identical to that of [23]. We summarize this
formalization in appendix A.

Contributions of this paper are as follows:

• An extension of our previous work lightweight dependent
classes that supports subclassing of an inner class whose en-
closing layer is parametrized (and thus the actual implementa-
tion is provided at the instantiation time of that type parameter).

• A proposal of programming technique using the proposed lan-
guage for the decomposition of layers enabling safe extension
of mutually recursive classes including inheritance relations.

The rest of this paper is structured as follows. In section 2,
we briefly introduce the earlier pieces of work and discuss their
problems. We then informally describe our idea by using a example



Figure 1. A layer extension

of simplified programming language processor taken from [19]
in section 3. In section 4, we discuss other related work. Finally,
section 5 concludes this paper.

2. Problem
2.1 An Overview of Our Previous Work
A layer consists of a set of (inner) classes that are mutually recur-
sive. When we extend the layer, we define a new layer that consists
of extensions of each inner classes. Figure 1 illustrates very simpli-
fied form of such a layered design. This example features a Graph
that consists of mutually recursive classes, namely Node and Edge;
each instance of Node holds references to its incident edges (in-
stances of Edge), and each edge holds references to its source and
destination nodes. Figure 1 also illustrates an extension of Graph,
namely WGraph, which adds a feature of setting weight of each
edge to Graph. In WGraph, the inner class Edge is refined to store
the weight of edge, and the inner class Node is refined to store a
property (e.g., a color or a label of the node). The extended Node
declares an abstract method value() to return a normalized value
of this property. In this program, the weight of edge is calculated
by using this property of the pair of nodes connected by the edge.
Thus, the connect() method have to be appropriately overridden.

Although this is a quite simple example, it explains a shortcom-
ing of the existing object-oriented languages; it is very hard to ex-
tend such mutually recursive classes at once. In such languages,
mutually recursive classes refer to each other by their names, thus
different sets of mutually recursive classes necessarily have differ-
ent names, even though their structures are similar.

Another problem of layered design is that, in many solutions to
this problem, mutually recursive classes are programmed as inner
classes of a top-level class, thus each layer can be a large mono-
lithic program. There exist some pieces of work that address this
problem. A common capability shared by them is to separate the
“inner” classes from the enclosing layer. To illustrate this feature,
we show an example program taken from [23] in Figure 2 and Fig-
ure 3, which implement the graph example shown in Figure 1.

Figure 2 shows a simple graph definition. A layer Graph is
implemented by a class Graph that consists of two inner classes,
namely Edge and Node, but each of their body is empty. The
implementation is separately provided by their superclasses EdgeI
and NodeI, respectively. EdgeI and NodeI are parametrized over
its enclosing layer by using type parameter (namely G), whose
upper bound is restricted by Graph. The notable feature is its ability
to access the inner classes on the type parameter, in the form
of G.Node. Thus, the corresponding inner class can be accessed
through the type parameter, but the actual class is lately provided
at the instantiation time of the parametrized class. This late binding
of enclosing layer enables safe extension of the layer Graph to its

class Graph {
class Edge extends EdgeI<Graph> { }
class Node extends NodeI<Graph> { }

}

class EdgeI<G extends Graph> {
G.Node src, dst;
void connect(G.Node s, G.Node d) {

s.add(this); d.add(this);
src = s; dst = d;

}
}

class NodeI<G extends Graph> {
Vector<G.Edge> es = new Vector<G.Edge>();
void add(G.Edge e) {

es.add(e);
}

}

Figure 2. Simple graph definition

class WGraph extends Graph {
class Edge extends WEdgeI<WGraph> { }
class Node extends RichNode<WGraph> { }

}

class WEdgeI<G extends WGraph>
extends EdgeI<G> {

int weight;
int f(G.Node s, G.Node d) {

int sv = s.value(); int dv = d.value();
... }

void connect(G.Node s, G.Node d) {
weight = f(s,d);
super.connect(s,d);

}
}

abstract class RichNode<G extends Graph>
extends NodeI<G> {

abstract int value();
}

Figure 3. Weighted graph extension

extension WGraph shown in Figure 3. In WGraph, the upper bound
of type parameter is refined to WGraph, thus the type G.Node is
ensured to be compatible with WGraph.Node. For the type safety,
some restrictions (e.g., the body of Edge and Node have to be
empty) and type inference rules for this (originally developed in
[22] and [34]) are proposed in [23].

2.2 Problem Description
An important limitation of this approach is that we cannot repre-
sent inheritance between classes within a layer. To show the prob-
lem, we use Figure 4 that is taken from [19]. This diagram shows
a layered design of a language processor. The upper layer, namely
AST, provides an abstraction of abstract syntax tree, which consists
of three inner classes, namely Expr, Const, and Plus. Since both
Const and Plus are kinds of Expr, they inherit from Expr. The
layer below, namely ASTeval, is an extension of AST that imple-
ments a feature of evaluation of each node. Thus, ASTeval.Expr



Figure 4. Layers for a language processor

provides an abstract eval method and both ASTeval.Const and
ASTeval.Plus inherit and override it. Furthermore, both of them
also inherit from AST.Const and AST.Plus, respectively, thus we
need multiple inheritance in this case, which is not supported by
[23].

Introducing multiple inheritance raises another problem. Since
AST.Const and AST.Plus also inherit from AST.Expr, AST.Expr
is inherited twice in ASTeval.Const and ASTeval.Plus. This is
particularly problematic when AST.Expr has fields. Virtual inheri-
tance in C++ is one solution to ensure that the subclass inherits only
one copy of AST.Expr’s field [37], but it also raises a problem in
object initializers.

Another solution to this diamond problem is to linearize the
order of method dispatch to ensure that the methods declared in
AST.Expr are dispatched only once. Even though this lineariza-
tion approach is taken by many languages[16, 27], it is not a best
solution in our case; if the linearization approach is taken, the
super call may result in a method call that is not declared in the
declared super class (for example, ASTeval.Expr’s super class
is AST.Expr, but the super call can result in a method call de-
clared in AST.Plus). This implicit change of the “actual” super-
class sometimes results in behaviors that are not intended by the
class implementer.

3. Informal Description of Our Proposal
To address the aforementioned problem, we propose a new pro-
gramming language mechanism that supports decomposition of
layers, which works even when a class within a layer inherits from
another class within the same layer. This is a very small extension
(or modification) of [23]. In [23], we can access an inner class on a
type parameter, and the actual class referred by it is lately resolved
at the instantiation time of the parametric class. In this paper, we
apply this technique to the declaration of superclass; a class can in-
herits from an inner class on a type parameter whose actual type is
lately provided at the instantiation time of the parametric class.

In this section, we explain the feature by using the example
shown in Figure 4.

3.1 Declaring Members of a Layer
Figure 5 shows our implementation of inner classes of the layer
AST, namely ExprT, ConstT and PlusT, which are actually su-
perclasses of the inner classes (see Figure 6). Each of them corre-
sponds to Expr, Const, and Plus in our layered design of language
processor shown in Figure 4, respectively. In these classes, the en-

class ExprT<L extends AST> {
String format() { return ""; }

}
class ConstT<L extends AST> extends L.Expr {

int val;
String format() { return ""+val; }

}
class PlusT<L extends AST> extends L.Expr {

L.Expr op1, op2;
String format() {

return op1.format()+"+"+op2.format();
}
void replaceOp1(L.Expr e) { op1 = e; }

}

Figure 5. Members of the AST layer

class AST {
class Expr extends ExprT<AST> {}
class Const extends ConstT<AST> {}
class Plus extends PlusT<AST> {}

}

Figure 6. AST class

closing layer is parametrized by the type parameter L, which makes
each class reusable in another layer that is compatible with AST.

PlusT declares two fields op1 and op2 corresponding to two
operands for the plus expression. The type of them is parametrized
over the enclosing layer L, like L.Expr. Thus the actual type of
them is lately provided at the instantiation of the parametrized class
PlusT. Likewise, it declares a method whose formal parameter
type is L.Expr, which replaces its first operand with the provided
expression.

Since both constant and plus expression are expressions, ConstT
and PlusT inherit from L.Expr. This is our new proposal that is
not provided by [23], since in [23], an actual superclass have to be
determined at the class declaration time. In this paper, on the other
hand, we can specify an inner class accessed on a type parameter
as a superclass, thus the actual superclass will be determined at
the class instantiation time. This flexibility provides an ability to
extend inheritance relation when the layer is extended.

The classes shown in Figure 5 are composed into a concrete
layer AST shown in Figure 6. Each type parameter L is instantiated
by AST inside the body of AST itself.

3.2 Extending Members
Now, we extend the AST layer to provide a feature of evaluation
of each AST node. For this purpose, we add the eval() method
to the Expr class. Figure 7 shows this extension. In this extension,
the upper bound of type parameter of EPlusT is now refined to an
extension of AST layer, namely ASTeval, shown in Figure 8.

EExprT is a subclass of ExprT that provides a new method
eval(). EConstT and EPlusT are also subclasses of ConstT and
PlusT, respectively. EPlusT overrides the eval() method, and
inside the body of it, the eval() method is called on the fields op1
and op2. These fields are inherited from PlusT, but these method
invocations are safe, because the type of op1 and op2 is declared as
L.Expr, and in the context of Figure 7, this type is compatible with
ASTeval.Expr that provides the eval() method. This mechanism
for extending mutually recursive classes is exactly the same as that
of [23]. Now, these classes are composed into a layer shown in
Figure 8.



class EExprT<L extends AST>
extends ExprT<L> {

int eval() { return 0; }
}
class EConstT<L extends AST>

extends ConstT<L> {
int eval() { return val; }

}
class EPlusT<L extends ASTeval>

extends PlusT<L> {
int eval() {

return op1.eval() + op2.eval(); }
}

Figure 7. Members of the extended AST layer

class ASTeval extends AST {
class Expr extends EExprT<ASTeval> {}
class Const extends EConstT<ASTeval> {}
class Plus extends EPlusT<ASTeval> {}

}

Figure 8. Extended AST class

class EConstT2 <L extends AST>
extends EConstT<L> {

...
}

class ASTeval2 extends ASTeval {
class Expr extends EExprT<ASTeval2> {}
class Const extends EConstT2<ASTeval2> {}
class Plus extends EPlusT<ASTeval2> {}

}

Figure 9. Another combination of extensions

Note that in Figure 8, both ASTeval.Const and ASTeval.Plus
inherit from ASTeval.Expr. Therefore, the inheritance relation
within AST, i.e., Expr is inherited by Const and Plus, is main-
tained in ASTeval, thus it is assured that some newly provided fea-
tures by ASTeval.Expr are also provided by ASTeval.Const and
ASTeval.Plus. The reason why this extension of inheritance rela-
tion is possible is that, in the superclass of EPlusT (and EConstT),
the enclosing layer is parametrized so that the actual superclass is
resolved as ASTeval.Expr when the parametrized class is instan-
tiated by ASTeval.

Since this approach is not use multiple inheritance, the diamond
problem is not occurred. This approach is actually somewhat sim-
ilar to mixins [7] in the sense that the superclass is parametrized.
Actually, in the definition of ConstT and PlusT, the implementer
expects that some subclass of them will refine the upper bound
of type parameter L so that some class that is more specific than
AST.Expr is mixed-in the inheritance chain.

3.3 Constructing a Series of Layers
So far, we have presented that a mechanism of layer decomposition
that works even when a class within a layer inherits from another
class within a layer. Now, we briefly review how this mechanism
can flexibly compose a series of layers from the decomposed com-
ponents of layers.

Figure 9 shows that there may be another implementation of
constant node in ASTeval, namely EConstT2. The new layer

ASTeval2 demonstrates that EConstT2 is also composed with
EExprT and EPlusT. This modification is local to implementation
of constant node and does not affect development of other parts of
the AST implementation. Furthermore, we can also compose the
extended class with the original layer. For example, we can form a
layer where only the constant node provides the eval() method:

class AST2 extends AST {
class Expr extends ExprT<AST2> {}
class Const extends EConstT<AST2> {}
class Plus extends PlusT<AST2> {}

}

Even though this is just a toy example, such ability to flexibly
compose a series of layers from the “modularized inner classes”
will help the development of much larger program, especially when
the modularization is systematically preplanned in a process such
as software product lines [33].

3.4 Notes on Typing Rules
To close this section, we finally discuss some issues on typing rules.

Restriction on inner classes. In Figure 6 and 8, both AST and
ASTeval declare inner classes Expr, Const and Plus. How does a
class from the base layer and another class with the same name
from the extended layer relate to each other? For example, is
ASTeval.Plus a subtype of AST.Plus?

For type safety, this subtyping is prohibited. To show the reason,
consider the following demonstration code:

AST.Const c1 = new AST.Const();
ASTeval.Plus p1 = new ASTeval.Plus();
AST.Plus p2 = p1;
p2.replaceOp1(c1);
p1.eval(); // error!

This code assigns the value of p1 to the variable p2. If the type-
checker accepts this code, i.e., ASTeval.Plus is a subtype of
AST.Plus (thus the assignment is allowed), the type of c1 is com-
patible with the formal parameter type of replaceOp1 invoked on
p2. However, the runtime type of p1 is ASTeval.Plus and thus the
invocation p2.eval() results in an invocation of eval() method
on the instance referred by c1, which results in the “method not
understood” error. Thus, the type-checker reports an error when an-
alyzing the assignment p2 = p1. This restriction on subtyping can
also be understood in another way; ASTeval.Plus is a subclass of
EPlusT<ASTeval>, while AST.Plus is a subclass of PlusT<AST>,
and both classes are not compatible in type system of Java 5.0.

However, this restriction raises another problem; if an inner
class declares some fields and methods, the access to those fields
and methods will not be safe. For example, if AST.Expr declares
a field Object f, a field access expression e.f, where e’s static
type is L.Expr and L is a type parameter whose upper bound is
AST, is not always safe, because L can be instantiated by ASTeval
and ASTeval.Expr no longer provides that field. To address this
field, the type system requires that the body of inner class must
always be empty. Although this restriction seems to be too strict, we
may easily relax it. For example, we may introduce a new modifier
that indicates the inner class can be accessed on type parameters
and thus may not declare any members. We may still declare non
empty inner classes that cannot accessed on type parameters. For
simplicity, in this paper, we omit this annotations and treat that all
the inner classes have an empty body.

Restriction on parametric superclass. In Figure 8, each inner
class overrides the corresponding inner class of the superlayer (for
example, ASTeval.Expr overrides AST.Expr). The superclass of
the overriding inner class is a subclass of that of overridden inner



class (for example, EExprT is a subclass of ExprT). This subclass-
ing is required by the type system, since without it, the type system
cannot ensure the type safety. For example, consider the following
declaration:

class ASTfoo extends AST {
class Expr extends Foo {}
..

}

In this case, ConstT and PlusT declared in Figure 5 have no
relations with ExprT when their type parameter is instantiated by
ASTfoo. Especially, the type of PlusT’s fields op1 and op2 become
a subtype of Foo and thus the method invocation of format() on
these fields raises an error. To avoid this problem, it is necessary to
ensure that L.Expr is always a subclass of ExprT.

Type inference for this. Another issue on type system is the
type of this. In the type system of Java, this can be treated as
an expression whose type is its enclosing class. However, as dis-
cussed in [22, 23], in the support of extension of mutually recursive
classes, the type of this has also to be extended. The detailed dis-
cussion is found in [23]; in this paper, we briefly resummarize the
type inference rule for this as follows:

• If one of the type parameters, namely X, has an upper bound
that is a class that declares an inner class, namely E, whose
superclass is the enclosing class of X where X is instantiated
by the enclosing class of E, the type of this is X.E; i.e., in the
following class declaration,

class C<X extends D> { .. }

where the class D is declared as

class D { .. class E extends C<D> {} .. }

then the type of this within C is X.E.
• Otherwise, the type of this is its enclosing class.

Note that if the superclass of the inner class is instantiated by the
subclass of the enclosing class, the first case of the type inference
rule is not applied. To ensure the type safety, it is required that to
apply the first rule of the inference, the superclass of the inner class
is instantiated exactly the same class as the enclosing class.

4. Related Work
As stated earlier, our approach supports extension of mutually re-
cursive classes like family polymorphism [11, 35], enabling de-
composition of mutually recursive classes from the enclosing layer.
This feature comes with a price that, in our approach, we have to in-
vent new names for implementing class (i.e., the super class) of the
inner classes when the layer is extended. Originally, inner classes
in family polymorphism are members of an object, thus the lan-
guage essentially involves a dependent type system. On the other
hand, based on the observation given by [20], Saito et al. propose
a much simpler variant of family polymorphism, in which families
are identified with classes[35]. Even though this approach sacrifices
some important features of the original family polymorphism (e.g.
each member of family may not access the instance of the enclos-
ing class), the resulting calculus is quite compact and reasonably
expressive. Our approach is similar to this approach, in that type
parameter members are also static members of enclosing class.

Virtual classes[13, 18, 24], also known as path-dependent types
[12, 31], and Delegation Layers [32], are also closely related to
this direction of research. In virtual classes, classes are declared as
fields of (enclosing) classes and they are referred from the outside

of class declarations as instance variables. Delegation Layers com-
bine the mechanism of delegation and virtual classes where compo-
sition of layers is instance-based using the delegation mechanism.
Our idea of parametrizing the enclosing class using a type param-
eter is analog of the dependent classes’ idea of parametrizing the
enclosing object using a constructor’s parameter.

This paper only shows layers that contain inner classes contain-
ing no other deeply nested classes. Variant path types for arbitrar-
ily deep nested classes are studied in [19]. Our work cannot scale
well in this manner. The examples shown in this paper only allow
nesting to be 1-level. If we encode such arbitrarily deep nesting
structure in this work, we have to parametrize all the levels of outer
classes in the declaration of deep inner classes. How to address this
issue remains as future work.

Avoiding the diamond inheritance is also studied by Malay-
eri [25]. However, as mentioned in section 3.2, our approach of
parametrization of superclass to avoid the diamond inheritance is
much similar to mixins [7]. There are many extensions of Java that
support mixins [3, 14, 21]. Instead, our approach is based on gener-
icity. Even though many pieces of work have been devoted to add
genericity to Java [1, 2, 10, 30], parametrization of superclass is not
so common in them. A notable exception is NextGen [2] that sup-
ports parametrization of superclass and thus supports mixin-based
inheritance. A similar programming technique using C++ template
is also studied in [36, 39]. In our approach, a type parameter can
also be used to represent an enclosing class that is not known at the
implementation time of the inner class.

5. Concluding Remarks
A programming language that is a small extension of our pre-
vious work “lightweight dependent classes” is proposed, which
supports subclassing of an inner class whose enclosing layer is
parametrized. The proposed language is built as a very small ex-
tension of Java with generics. Using this language, a program-
ming technique for decomposing mutually recursive classes from
the layer, which works even when a class within a layer inherits
from another class within the same layer, is proposed. This makes
it possible to flexibly compose a series of layers from the decom-
posed components of layers. The core of language is formalized
based on FJ. This formalization provides a solid information for
compiler implementation and proof of type soundness, which indi-
cate our direction of future work.
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A. Formalization
In this section, we formalize the idea described in the previous
section. This formalization is built on top of FJ [17].

A.1 Syntax
Abstract syntax is shown in Figure 10. The metavariables T, S, V,
and U range over types; X, Y, Z, and W range over type variables; N, O,
P, and Q range over nonvariable types; A ranges over instantiatable
types; C, D, and E range over class names; L ranges over class
declarations; K ranges over constructor declarations; M ranges over
method declarations; I ranges over inner class declarations; f and g
range over field names; m ranges over method names; x and y range
over variables; d and e range over expressions.



fields(Object) = · (F-OBJECT)

class C<X̄ ¢ N̄>¢S {S̄ f̄; K M̄ Ī} fields([T̄/X̄]S) = Ū ḡ

fields(C<T̄>) = Ū ḡ, [T̄/X̄]S̄ f̄
(F-CLASS)

class C<X̄ ¢ N̄>¢S {.. class D¢P {} ..}
fields([T̄/X̄]P) = Ū ḡ E £ C

fields(E<T̄>.D) = Ū ḡ
(F-NEST)

Figure 11. Field lookup function

We write f̄ as a shorthand for a possibly empty sequence
f1 · · · fn, and M̄ as a shorthand for M1 · · · Mn. Furthermore, we
abbreviate pairs of sequences in a similar way, writing “T̄ f̄” as a
shorthand for “T1 f1,...,Tn fn,” “this.f̄=f̄;” as a shorthand
for “this.f1=f1;...;this.fn=fn;”, “X̄¢ N̄” as a shorthand for
“X1 ¢ N1, · · · , Xn ¢ Nn”, and so on. We write the empty sequence
as · and the length of sequence f̄ as #(f̄). Sequences of type vari-
ables, field declarations, parameter names, and method declarations
are assumed to contain no duplicate names.

We abbreviate the keyword extends to the symbol ¢. A class
can extend any kinds of types, including type parameters and in-
ner class accessed on type parameter. We assume that the set of
variables includes the special variable this, which is considered
to be implicitly bound in every method declaration. Our calculus
supports polymorphic methods, and type parameters for generic
method invocation is explicitly provided with the form e.m<T̄>(ē).
A class must declare only one constructor that initializes all the
fields of that class. A constructor declaration is only the place
where assignment operator is allowed, and a method body consists
of single return statement.

Subclassing is also shown in Figure 10, which is represented by
the relation C£T between a class and a type. This is a reflexive and
transitive closure induced by the clause C<X̄ ¢ N̄> ¢ D<T̄>.

A program is a pair (CT, e) of a class table CT and an ex-
pression e. A class table is a map from class names to their corre-
sponding class declarations. The expression e is considered as the
main method of the real program. We assume that a class Object
has no members and its definition does not appear in the class
table. The class table is assumed to satisfy the following condi-
tions: (1) CT (C) =class C ... for every C ∈ dom(CT ); (2)
Object 6∈ dom(CT ); (3) C ∈ dom(CT ) for every class name ap-
pearing in ran(CT ); (4) there are no cycles in subclass relations
induced by CT .

In the induction hypothesis shown below, we abbreviate CT (C) =
class C ... as class C ....

A.2 Auxiliary definitions
We show some auxiliary definitions that are required for typing
rules. The function fields(N), shown in Figure 11, is a sequence
T̄ f̄ of field types and field names declared in N. Application of type
substitution [T̄/N̄] is defined in the customary manner. We write
C 6∈ Ī to mean that the inner class definition of the name C is not
included in Ī. The function fields returns all the fields declared in
the class (including the superclasses). In the case of inner class,
the fields are searched even when the inner class is declared in the
superclass of the top-level class.

The type of method m at N, written mtype(m, N), is defined in
Figure 12. It is a type of the form <X̄ ¢ N̄>Ū → U. Just as in Java’s

class C<X̄ ¢ N̄>¢V {S̄ f̄; K M̄}
<Ȳ ¢ P̄> U m(Ū x̄) { return e; } ∈ M̄

mtype(m, C<T̄>) = [T̄/X̄](<Ȳ ¢ P̄>Ū→ U)
(MT-CLASS)

class C<X̄ ¢ N̄>¢V {S̄ f̄; K M̄} m 6∈ M̄
mtype(m, [T̄/X̄]V) = <Ȳ ¢ P̄>Ū→ U

mtype(m, C<T̄>) = <Ȳ ¢ P̄>Ū→ U
(MT-SUPER)

class C<X̄ ¢ N̄>¢V {.. class D¢Q {} ..}
mtype(m, [T̄/X̄]Q) = <Ȳ ¢ P̄>Ū→ U

mtype(m, C<T̄>.D) = <Ȳ ¢ P̄>Ū→ U
(MT-NEST)

class C<X̄ ¢ N̄>¢V {.. Ī} D 6∈ Ī
mtype(m, [T̄/X̄]V.D) = <Ȳ ¢ P̄>Ū→ U

mtype(m, C<T̄>.D) = <Ȳ ¢ P̄>Ū→ U
(MT-NEST-SUPER)

Figure 12. Method type lookup function

class C<X̄ ¢ N̄>¢W {S̄ f̄; K M̄}
<Ȳ ¢ P̄> U m(Ū x̄) { return e0; } ∈ M̄

mbody(m<V̄>, C<T̄>) = x̄.[T̄/X̄, V̄/Ȳ]e0

(MB-CLASS)

class C<X̄ ¢ N̄>¢W {S̄ f̄; K M̄} m 6∈ M̄
mbody(m<V̄>, [T̄/X̄]W) = x̄.e

mbody(m<V̄>, C<T̄>) = x̄.e
(MB-SUPER)

class C<X̄ ¢ N̄>¢W {.. M̄ class D¢Q {} ..}
m 6∈ M̄ mbody(m<V̄>, [T̄/X̄]Q) = x̄.e

mbody(m<V̄>, C<T̄>.D) = x̄.e
(MB-NEST)

class C<X̄ ¢ N̄>¢W {.. Ī } D 6∈ Ī
mbody(m<V̄>, [T̄/X̄]W.D) = x̄.e

mbody(m<V̄>, C<T̄>.D) = x̄.e
(MB-NEST-SUPER)

Figure 13. Method body lookup functions

type system, class declaration is searched for finding the type of
method, and if the method is not declared in the current searched
class, then the superclass is searched. We write m 6∈ M̄ to mean that
the method definition of the name m is not included in M̄. Similarly
the body of method m at N, written mbody(m, N), is defined in Figure
13. It is a pair, written x̄.e, of a sequence of parameters x̄ and an
expression e.

Type reduction rules and type inference rules for this are de-
fined in Figure 14. The reduction R(T) returns the class that pro-
vides the implementation of the (empty) inner class. The only inter-
esting case is for N.C (the first and the second rules). Otherwise, R
behaves as an identity function. The function thistype returns the



Type reduction:

class C<X̄ ¢ N̄>¢S{.. class D¢P {} ..}
R(C<T̄>.D) = P

class E<X̄ ¢ N̄>¢S{.. Ī } D 6∈ Ī

R(E<T̄>.D) = R(S.D)

R(X.C) = X.C

R(N) = N

R(X) = X

Type inference for this:

class C<X̄ ¢ N̄>¢W{..} Ni = D<S̄> Ui = D<S̄>
class D<Ȳ ¢ P̄>¢V{.. class E¢C<Ū>{} ..}

thistype(C<T̄>) = Ti.E

class C<X̄ ¢ N̄>¢V{..}
thistype(C<T̄>) = C<T̄>

Figure 14. Type reduction and type inference for this

bound∆(X) = ∆(X)

bound∆(C<T̄>) = C<T̄>

bound∆(X) = C<T̄>
class C<X̄ ¢ N̄>¢V{.. class D¢E<S̄, C<T̄>, Ū>{}..}

bound∆(X.D) = E<S̄, X, Ū>

bound∆(T) = C<T̄>
class C<X̄ ¢ N̄>¢S{.. class D¢P{} ..}

bound∆(T.D) = P

bound∆(T) = C<T̄>
class C<X̄ ¢ N̄>¢S{.. Ī} D 6∈ Ī

bound∆(T.D) = bound∆(S.D)

Figure 15. Bound of type

inferred type of this using the upper bounds of type parameters.
We assume that the second rule is applied only when the first rule
does not hold. To ensure the type safety, the first rule is applied only
when the superclass of the inner class is instantiated exactly the
same class as the enclosing class (further discussion can be found
in [23]).

A.3 Typing
An environment Γ is a finite mapping from variables to types,
written x̄ : T̄. A type environment ∆ is a finite mapping from type
variables to nonvariable types, written X̄<:N̄. As defined in Figure
15, we write bound∆(T) for an upper bound of T in ∆. Besides

∆ ` T <: T
(S-REFL)

∆ ` X <: ∆(X)
(S-VAR)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
(S-TRANS)

class C<X̄ ¢ N̄>¢S {...}
∆ ` C<T̄> <: [T̄/X̄]S

(S-CLASS)

class C<X̄ ¢ N̄>¢S {.. class D¢P{}..} E £ C
E £ C0 and C0 £ C implies class C0<..>..{..Ī} and D 6∈ Ī

∆ ` E<T̄>.D <: [T̄/X̄]P
(S-DOT)

Figure 16. Subtyping rules

type parameters and nonvariable types, we also need to define
bound∆ of inner class type T.D. Note that the upper bound of
T.D is its superclass, since the body of inner class is always empty.
Furthermore, there is a special case for inner class type D on type
variable X, i.e., X.D. In this case, if the upper bound of X appears
in the type argument list of D’s superclass, it is replaced with
X. This replacement is necessary to ensure that type substitution
preserves typing, because variance subtyping is not allowed for
generic classes. We assume that the fourth rule is applied only when
the third rule does not hold.

The subtyping relation ∆ ` S <: T, read “S is a subtype of T in
∆,” is defined in Figure 16. Subtyping is the reflexive and transitive
closure of the extends relation. If a class overrides an inner class,
the type of that inner class is subtype of the superclass of the lower
most inner class.

We write ∆ ` T ok if a type T is well formed in context ∆. The
rules for well-formed types appear in Figure 17. A type C<T̄> is
well formed if a class declaration that begins with class C<X̄¢ N̄>
exists in CT , substituting T̄ for X̄ respects the bounds N̄, and all of
T̄ are ok. An inner class type T.D is well-formed if the path type T
is ok and the inner class D is declared in some super class of upper
bound of T. We say that a type environment ∆ is well-formed if
∆ ` ∆(X) ok for all X in dom(∆). We also say that an environment
Γ is well-formed with respect to ∆, written ∆ ` Γ ok, if ∆ ` Γ(x)
ok for all x in dom(Γ). The function override(D, N, P, ∆) indicates
the condition of valid overriding of inner classes. This condition is
true if there exists a super type of N.D in environment ∆, it must
be a super type of P. The function override(m, N, <Ȳ ¢ P̄>T̄ → T0)
ensures covariant overriding on the method result type.

Typing rules for expressions are shown in Figure 18. The typing
judgment for expressions is of the form ∆;Γ ` e : T, read as “un-
der the type environment ∆ and the environment Γ, the expression
e has type T.” The typing rules are syntax directed, with one rule
for each form of expression. These rules are straightforward. The
typing rules for constructor and method invocations check that the
type of each argument expression is a subtype of the corresponding
formal parameter type.

Typing rules for method and class declarations are defined in
Figure 19. The typing judgment for method declarations, which
has the form M OK IN C, read “method declaration M is ok when
it occurs in class C,” uses the expression typing judgment on the
body of the method, where the free variables are the parameters of
the method with their declared types and the special variable this.
The function thistype infers the type of this, and the predicate
override ensures the covariant overriding on the method result type.
The typing judgment for inner class declarations has the form I OK



Well-formed types:

∆ ` Object ok (WF-OBJECT)

X ∈ dom(∆)

∆ ` X ok
(WF-VAR)

class C<X̄ ¢ N̄>¢S {...}
∆ ` T̄ ok ∆ ` T̄ <: [T̄/X̄]N̄

∆ ` C<T̄> ok
(WF-CLASS)

class C<X̄ ¢ N̄>¢S {.. class D¢P {} ..}
bound∆(T) = E<T̄> ∆ ` T ok E £ C

∆ ` T.D ok
(WF-DOT)

Valid inner class overriding:

∀C, ∆ ` N.D £ C implies ∆ ` P £ C

override(D, N, P, ∆)

Valid method overriding:

mtype(m, T) = <Z̄ ¢ Q̄>Ū→ U0 implies
P̄, T̄ = [Ȳ/Z̄](Q̄, Ū) and Ȳ<:P̄ ` T0 <: [Ȳ/Z̄]U0

override(m, T, <Ȳ ¢ P̄>T̄→ T0)

Figure 17. Type well-formedness rules and valid method overrid-
ing

∆;Γ ` x : Γ(x) (T-VAR)

∆;Γ ` e0 : T0 fields(bound∆(R(T0))) = T̄ f̄

∆;Γ ` e0.fi : Ti

(T-FIELD)

∆;Γ ` e0 : T0 mtype(m, bound∆(R(T0))) = <Ȳ ¢ P̄>Ū→ U
∆ ` V̄ ok ∆ ` V̄ <:R([V̄/Ȳ]P̄)

∆; Γ ` ē : S̄ ∆ ` S̄ <:R([V̄/Ȳ]Ū)

∆; Γ ` e0.m<V̄>(ē) : [V̄/Ȳ]U
(T-INVK)

∆ ` A ok fields(A) = T̄ f̄
∆;Γ ` ē : S̄ ∆ ` S̄ <:R(T̄)

∆; Γ ` new A(ē) : A
(T-NEW)

Figure 18. Expression typing

Method typing:

∆ = X̄<:N̄, Ȳ<:P̄ ∆ ` T̄, T, P̄ ok
∆; x̄ : T̄, this : thistype(C<X̄>) ` e0 : S ∆ ` S <: T

class C<X̄ ¢ N̄>¢U {...}
override(m, U, <Ȳ ¢ P̄>T̄→ T)

<Ȳ ¢ P̄> T m(T̄ x̄) { return e0; } OK IN C<X̄ ¢ N̄>
(T-METHOD)

Inner class typing:

class C<X̄ ¢ N̄>¢S {.. class D¢P {} ..}
X̄<:N̄ ` P ok override(D, boundX̄<:N̄(S), P, X̄<:N̄)

class D¢P {} OK IN C<X̄ ¢ N̄>
(T-NEST)

Class typing:

X̄<:N̄ ` N̄, T̄, S ok fields(S) = Ū ḡ M̄ OK IN C<X̄ ¢ N̄>
K = C(Ū ḡ, T̄ f̄) {super(ḡ); this.f̄=f̄;}

Ī OK IN C<X̄ ¢ N̄>

class C<X̄ ¢ N̄>¢S {T̄ f̄; K M̄ Ī} OK
(T-CLASS)

Figure 19. Method and class typing

IN C, read “inner class declaration I is ok when it occurs in class
C.” The typing judgment for class declarations, which has the form
C OK, read “class declaration C is ok,” checks that the constructor
is well-defined, each method declaration in the class is ok, and each
inner class declaration is ok.

A class table CT is OK if all its definitions are OK.

A.4 Reduction
The operational semantics is defined with the reduction relation that
is of the form e −→ e′, read “expression e reduces to expression e′

in one step.” We write −→∗ for the reflexive and transitive closure
of −→.

The reduction rules are given in Figure 20. As in the original
FJ, we use the non-deterministic reduction strategy. There are two
computation rules, one for field access and another for method in-
vocation. The field access reduces to the corresponding argument
for the constructor. The method invocation reduces to the expres-
sion of the method body, substituting all the parameter x̄ with the
argument expression d̄ and the special variable this with the re-
ceiver. We write [d̄/x̄, e/y]e0 for the expression obtained from e0

by replacing x1 with d1,...,xn with dn, and y with e.

A.5 Property
We are now preparing the proof of type soundness of the calculus
presented in this paper. This can be done by proving the following
three theorems.

THEOREM A.1 (Subject Reduction). If ∆;Γ ` e : T and e −→
e′, then ∆;Γ ` e′ : T′ for some T′ such that ∆ ` T′<:T.

THEOREM A.2 (Progress). Suppose e is a well-typed expression.

1. If e includes new A0(ē).f as a subexpression, then fields(A0) =
T̄ f̄ and f ∈ f̄ for some T̄ and f̄.

2. If e includes new A0(ē).m<V̄>(d̄) as a subexpression, then
mbody(m<V̄>, A0) = x̄.e0 and #(x̄) = #(d̄) for some x̄ and
e0.



Computation:

fields(A) = T̄ f̄

(new A(ē)).fi −→ ei
(R-FIELD)

mbody(m<V̄>, A) = x̄.e0

(new A(ē)).m<V̄>(d̄) −→ [d̄/x̄, new A(ē)/this]e0

(R-INVK)

Congruence:

e0 −→ e′0
e0.f −→ e′0.f

(RC-FIELD)

e0 −→ e′0
e0.m<T̄>(ē) −→ e′0.m<T̄>(ē)

(RC-INV-RECV)

ei −→ e′i
e0.m<T̄>(...,ei,...) −→ e0.m<T̄>(...,e

′
i,...)

(RC-INV-ARG)

ei −→ e′i
new A(...,ei,...) −→ new A(...,e′i,...)

(RC-NEW-ARG)

Figure 20. Reduction rules

To state the type soundness theorem formally, we give the defi-
nition of value below:

v ::= new A(v̄)

THEOREM A.3 (Type Soundness). If ∅; ∅ ` e : T and e −→∗ e′

with e′ a normal form, then e′ is a value v with ∅; ∅ ` v : S and
∅ ` S<:T.


