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Abstract. To realize object adaptability with a clear conceptual frame-
work, a role model Epsilon was proposed. The novelty of Epsilon model is
its ability to change object’s behavior dynamically. However, such kind of
flexibility also easily brings type-unsafety and other unreliabilities. This
paper proposes a small core language ε that formalizes some key concepts
of object adaptation, which is informally described in the Epsilon model.
In ε, three kinds of objects, context instances, role instances, and class
instances exist at run-time. A role instance is a member of a context
instance where how role instances are collaborating with each other is
encapsulated. A class instance can dynamically assume a role by binding
itself with a role instance, and can also throw the role away. Their re-
lationship can change during computation, and ε’s type system assures
that the computation does not go wrong, even though some exceptional
cases concerning downcasting exist. This formalization clarifies the es-
sential features of the object adaptation incorporated in Epsilon model
and provides a solid base for program analysis and language processor
implementation.

1 Introduction

Considerable research efforts have been devoted to make objects in object-
oriented systems more flexible and adaptable. The recent interest in self-managed
(or autonomic, self-healing, adaptive) systems/computing indicates renewed at-
tention on this target.

Objects in the conventional object-oriented languages are created from fixed
templates defined as classes and once they are created, it is hard to change their
structures and behaviors dynamically. One way of enabling dynamic changes
to objects is to fully employ the mechanism of meta-programming or reflection
and allow free transformation of objects at run-time. Some languages such as
Ruby[27] provide dynamic object structure change capability as their innate
feature. The obvious problem with such a feature and meta-programming in
general is performance decline. But even if performance is somehow ensured at
a certain level, taking advantage of sophisticated optimizing techniques, there
will still remain the problem of programming difficulties and error-proneness.

In [25], Tamai et al. proposed a role model Epsilon and a language based
on the model EpsilonJ (the revised version is also available in [26]). The aim of



this model was to realize object adaptability with a clear conceptual framework.
A collaboration field called environment or context can be defined by a set of
roles that interact with each other. An object can dynamically participate in a
collaboration field and assume one of its roles so that it acquires functions of
the role and capability of collaborating with other roles in the field. An object
may assume multiple roles of different collaboration fields at a time so that it
grows into a complex object with rich functions but its behavior can be clearly
comprehensible from the base behavioral properties of roles.

However, such kind of flexibility also easily brings type-unsafety and other
unreliabilities. To avoid such unreliabilities, constructs of Epsilon should for-
mally be defined. In [25] or [26], however, only a brief description (described by
examples) on the semantics of the language EpsilonJ was provided. A full lan-
guage specification is released on the Web[24] but its description is informal. In
fact, even though there are many formal studies on collaboration-based design,
relatively few efforts have been made on formalizing object adaptation.

In this paper, we propose a small core calculus ε that formalizes some key
concepts of object adaptation, described in [25]. In ε, three kinds of objects,
context instances that represent collaboration fields, role instances, and class
instances exist at run-time. A role instance is a member of a context instance
where collaboration between role instances is encapsulated. A class instance can
dynamically assume a role by binding itself with a role instance, and can also
throw the role away. Their relationship can be changed during computation, and
ε’s type system assures that the computation does not go wrong, even though
some exceptional cases concerning downcasting exist.

Even though ε is quite similar to EpsilonJ, it is not designed to be a small
subset of EpsilonJ. Instead, the aim of this work is to understand the essences
of object adaptation; therefore, there are some differences between EpsilonJ and
ε. In short, ε puts more emphasis on stating clear language semantics, while
EpsilonJ provides much liberal ways for writing programs. Nevertheless, this
formalization clarifies the essential features of the object adaptation mechanism
incorporated in EpsilonJ and provides a solid base for program analysis and
language processor implementation.

2 An Overview of Object Adaptation

To make this paper self-contained, we briefly summarize the main features of
object adaptation that are formerly described in [25] as Epsilon model. In this
section, we informally describe these features by using Java-like syntax.

In the Epsilon model, three kinds of objects, context instances, role instances,
and class instances, exist at run-time. A context instance is a collaboration field
where role instances interact with each other. A role instance is a member of
a context instance, and there may be multiple role instances associated with a
context instance. A set (or a sequence) of role instances associated with a context
instance is called a role group. Behind the scenes, contexts are augmented by
an internal field representing the role group. A class instance is the same as in



context Company {

role Employer {

void pay() {

Employee.getPaid();} }

role Employee {

int save, salary;

Employee(int salary) {

this.salary = salary;}

void getPaid() {

save += salary; } } }

class Person {

int money; }

Person tanaka = new Person();

Person komiyama = new Person();

Company todai = new Company();

todai.Employer.newBind(komiyama);

todai.Employee.newBind(tanaka,1000);

((Company.Employer)komiyama).pay();

Fig. 1. Declaration of the context Company and object adaptation.

conventional Java-like languages, except that it can dynamically participate in
a collaboration field (represented by a context instance) by assuming one of its
role instances so that it acquires functions of the role instance and capability
of collaborating with other role instances. Behind the scenes, classes are also
augmented by an internal field representing the set of assuming roles.

How a context is declared is demonstrated in Fig.1. A context is declared
using context declaration that begins with the keyword context followed by the
name of context (that is Company in Fig.1). A Role is declared as a member of the
context using role declaration that begins with the keyword role. In Fig.1, two
roles, Employer and Employee, are declared. Each context and role is declared
with fields, methods and constructors just like classes.

A role group is associated with the enclosing context instance and referred
by the role name. We can access each instance of role group by using an iterator
that iterates over the role group. In Fig.1, however, we use a more convenient
syntactic sugar; we can apply a method declared in the role to the whole role
group, and the method is invoked for all the role instances. Thus, the method
call Employee.getPaid() is interpreted as calling the method getPaid of all
the Employee’s instances.

In Epsilon model, contexts and roles are the first class constructs at runtime
as well as at model description time. A context is instantiated by the new ex-
pression; the expression new Company() creates an instance of Company. A role
instance is created by a special operation newBind that performs two things;
(1) it creates a role instance that is a member of the receiver context; and (2)
it binds the role instance with the class instance provided as an argument of
newBind. In Fig.1, the instances of Person, komiyama and tanaka, assume the
roles todai.Employer and todai.Employee, respectively. Note that the second
and the following arguments, if any, of newBind call are arguments for construc-
tor call of roles. After the binding, the object bound to the role acquires an
access to the role instance and thus can use the role methods. Furthermore, it
acquires type of the role, and the role methods are invoked through type-casting.
In fact, the type of expression (Company.Employer)komiyama is a mixin compo-
sition[17] Company.Employer::Person, where :: is a composition operator, thus
we can safely access the pay() method declared in Company.Employer. Whether



komiyama can be cast to Company.Employer or not (i.e. whether komiyama as-
sumes a role instance of Company.Employer or not) is checked at run-time.

The binding of a class instance and a role instance may be dissolved at run-
time; for this purpose, any role implicitly declares unbind method. For example,
the following piece of code

((Company.Employee)tanaka).unbind();

firstly casts tanaka to its role Company.Employee, then calls unbind. After call-
ing unbind, the connection between tanaka and Company.Employee is dissolved,
and the dissolved role instance becomes garbage. Instead, another class instance
may assume the unbound role instance if we use the swap method, which is also
implicitly declared in a role. For example, the following code

Person sato = new Person();
((Company.Employee)tanaka).swap(sato);

results in that sato takes over tanaka’s Company.Employee role.
There should be some interaction between a class instance and a role instance

that are bound together so that the state and the behavior of the class instance
should be affected by the binding. For this purpose, there is a way of defining an
interface to a role and this is used at the time of binding with a class instance,
requiring the class instance to supply the interface. This interface is declared
with the requires phrase as follows.

role Employee requires { void deposit(int); } {
void sendSalary(int salary) { deposit(salary); } }

When a required interface is declared to a role, methods can be imported to
the role from the class instance. For example, suppose the class Person has a
method deposit:

class Person { ... int money;
void deposit(int s) { money+=s; } }

After the binding of todai.Employee.newBind(tanaka) in the previous pro-
gram piece, the method deposit(int) of tanaka is imported to the Employee
role instance through the interface. When an interface method is overridden by
the corresponding role method, the replacing method of the binding object be-
comes hidden. If there is a need for invoking the hidden method in the context,
either in the body of the overriding method or in other role (or context) meth-
ods, it is possible to invoke it by attaching the qualifier super to the method
name.

Since the role instance requires the class instance to supply the requires
interface, the class has to implement it. Note that the requires interface may
be anonymous, just as shown in the above program. In other words, the class
has to be a structural subtype of the requires interface. A similar mechanism is
also found in [17].



A ::= C | X
T ::= A | X.R | X.R :: C

TS ::= T | { M̄I }
LC ::= class C � D { T̄ f̄ ; M̄ }
LR ::= role R requires { M̄I }{T̄ f̄ ; M̄}
LX ::= context X { T̄ f̄ ; M̄ L̄R }
M ::= T m(T̄ x̄){ return e; }

MI ::= T m(T̄ x̄);
r ::= e0.R(ē)
e ::= x | e.f | e.m(ē) | (new C(ē), r̄) | new X(ē) | e0.R.newBind(e, d̄) |

e0.unbind() | e0.swap(e) | (X.R)e
v ::= (new C(v̄), r̄) | new X(v̄) | (X.R)(new C(v̄), r̄)

Fig. 2. Abstract syntax

Finally, we note that a class instance may assume multiple roles; for example,
a person can be a customer, a patient, and an employee depending on the context.
Current context of the person may change through downcasting. Furthermore,
a class instance may change roles even within a context; for example, a person
can change its role from an employee to an employer, which is possible because
a class instance may discard a role and assume another role dynamically. By
using the swap operation, the state of the old employer (e.g., unfinished tasks,
responsibilities, and so on) is taken over by the new employer.

3 ε: the core calculus of Epsilon

This section provides a small core calculus ε of Epsilon model. This formaliza-
tion is based on FJ[16], a minimum core language of Java, but includes some
additional features found in the full Java language such as super calls that are
needed to model important features of object adaptation.

Syntax. The abstract syntax of ε is shown in Fig.2. In this paper, the metavari-
able A ranges over class or context names; S, T , and U range over named types;
TS ranges over types (including requires interface); C, D and E range over
class names; R ranges over role names; X ranges over context names; LC ranges
over class declarations; LR ranges over role declarations; LX ranges over context
declarations; f and g range over field names; M and N range over method dec-
larations; MI ranges over interface method declarations; m ranges over method
names; b, c, d and e range over expressions; x ranges over variables; r and s
range over role instances; v and w range over values.

We put an over-line for a possibly empty sequence. Furthermore, we ab-
breviate pairs of sequences in a similar way, writing “T̄ f̄” as a shorthand for
“T1 f1, · · · , Tn fn”, where n is the length of T̄ and f̄ , and so on (the same way
introduced in [16]).



Object adaptation can be realized with some imperative features. However,
imperative features will introduce complexity in the type system. We can take
another approach to concentrate on the new features incorporated in Epsilon
model. We design ε as a purely functional calculus; i.e. the state of context
instance never changes after the constructor invocation (in this paper, construc-
tor declarations are abbreviated and constructor invocations become implicit).
To model the dynamic semantics of object adaptation, we regard each class in-
stance as a pair of a constructor invocation and a sequence of roles that the
class instance is bound with. Therefore, ε is considered as a runtime expression
language, since the programmer does not write (new C(ē), r̄) but only new C(ē),
which is identical to (new C(ē), ·). The role instances r̄ are generated during the
evaluation and needed in the rules to check and maintain the roles of the class
instance.

In ε, there are two kinds of types: named types and interface types. A named
type is represented by a class name, a context name, a role name prefixed by
a context name, or a mixin composition in the form of X.R :: C. These types
may appear in field declarations, formal parameter types and return types. On
the other hand, interface types, denoted by { M̄I }, may appear only in the
requires clause.

As in FJ, we assume that the set of variables includes the special variable
this, which is considered to be implicitly bound in every method declaration.
Furthermore, we also assume that the set of variables includes the special vari-
able super, which is considered to be implicitly bound in every role method
declaration.

For the reduction and typing rules, we need a few auxiliary definitions, given
in Fig.3. We write m 6∈ M̄ to mean that the method definition of the name m
is not included in M̄ . The fields of type T , written fields(T ), is a sequence T̄ f̄
pairing the type of each fields with its name. The type of method m in type
TS , written mtype(m,TS), is a pair, written T̄ → T0, of a sequence of formal
parameter types T̄ and its return type T0. If T is a role type X.R and m is not
found in X.R, its requires interface is searched. If T is a mixin composition,
the left operand of :: is searched first. Similarly, the body of method m in
type T , written mbody(m,T ), is a pair, written (x̄, e), of a sequence of formal
parameters x̄ and an expression e.

We also present a rule that checks whether a role can be bound to a class
instance or not. The following predicate bindable is used for this checking. An
instance of role X.R can be bound to an instance of class C if C is a subtype of
X.R’s required interface { M̄I }.

Subtyping rules of ε are shown in Fig.4. Subtyping is a reflexive and transitive
closure induced by the subclassing relation. Furthermore, a class is a subtype
of an interface if the class implements all the methods declared in the interface.
This subtyping rule is used in checking whether a role can be bound to a class
or not. There also exists some straightforward subtyping rules regarding mixin
composition.



Field lookup:

class C � D { T̄ f̄ ; M̄ }
fields(D) = S̄ ḡ

fields(C) = S̄ ḡ, T̄ f̄

context X { T̄ f̄ ; N̄ L̄R}
role R requires { · · · }{ S̄ ḡ; · · · } ∈ L̄R

fields(X.R) = S̄ ḡ

context X { T̄ f̄ ; N̄ L̄R }
fields(X) = T̄ f̄

fields(X.R) = S̄ ḡ fields(C) = T̄ f̄

fields(X.R :: C) = T̄ f̄ ; S̄ ḡ

fields(T ) = T̄ f̄

ftype(fi, T ) = Ti

Method body lookup:

class C � D { T̄ f̄ ; M̄ }
T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, C) = (x̄, e)

class C � D { T̄ f̄ ; M̄ } m 6∈ M̄

mbody(m, C) = mbody(m, D)

context X { · · · M̄ L̄R }
T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, X) = (x̄, e)

context X { · · · L̄R }
role R requires { M̄I }{ · · · M̄ } ∈ L̄R

T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, X.R :: C) = (x̄, e)

context X { · · · L̄R } m 6∈ M̄
role R requires { M̄I }{ · · · M̄ } ∈ L̄R

mbody(m, X.R :: C) = mbody(m, C)

Method type lookup:

class C � D { T̄ f̄ ; M̄ }
T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, C) = T̄ → T

class C � D {T̄ f̄ ; M̄} m 6∈ M̄

mtype(m, C) = mtype(m, D)

context X { T̄ f̄ ; N̄ L̄R }
T m(T̄ x̄){ return e; } ∈ M̄

role R requires {M̄I}{· · · M̄} ∈ L̄R

mtype(m, X.R) = T̄ → T

context X {T̄ f̄ ; N̄ L̄R} m 6∈ M̄
role R requires {M̄I}{· · · M̄} ∈ L̄R

mtype(m, X.R) = mtype(m, {M̄I})

T m(T̄ x̄);∈ M̄I

mtype(m, {M̄I}) = T̄ → T

mtype(m, X.R) = T̄ → T

mtype(m, X.R :: C) = T̄ → T

mtype(m, X.R) is undefined

mtype(m, X.R :: C) = mtype(m, C)

context X { T̄ f̄ ; M̄ L̄R }
T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, X) = T̄ → T

Binding check:

C <: {M̄I} context X {· · · L̄R}
role R requires {M̄I}{ · · · } ∈ L̄R

bindable(X.R, C)

Fig. 3. Auxiliary definitions



TS <: TS

class C � D { · · · }
C <: D

C <: D D <: E

C <: E

T m(T̄ x̄);∈ M̄I ⇒ mtype(m, C) = T̄ → T

C <: {M̄I}

X.R :: C <: C X.R :: C <: X.R
D <: C

X.R :: D <: X.R :: C

Fig. 4. Subtyping rules

An ε program is a pair (CT, e) of a class table CT and an expression e. A
class table is a map from class names and context names to class declarations
and context declarations, respectively. The expression e may be considered as
the main method of the “real” program. The class table is assumed to satisfy the
following conditions: (1) CT (C) = class C · · · for every C ∈ dom(CT ); (2)
CT (X) = context X · · · for every X ∈ dom(CT ); (3) all roles R in CT (X)
are uniquely named; (4) T ∈ dom(CT ) for every class name, context name, and
role name appearing in range(CT ).

Dynamic semantics. The reduction rules of ε are shown in Fig.5. The reduc-
tion relation is of the form e −→ e′, read “expression e reduces to expression e′

in one step.” We write −→∗ for the reflective and transitive closure of −→.
There are two rules for field access (as in FJ, we assume that all the field

names are distinct); one is field access to a class instance or context instance (the
rule R-FIELD)1, and the other is field access to a role instance through type
casting (the rule R-RFIELD). Note that R-RFIELD shows that a field access
to a role instance reduces to the corresponding actual argument for the role
constructor. During the computation, a class instance has to retain the states
of the role instances which the class instance is bound with, which is why we
formulate a class instance as a pair of a class constructor invocation and a
sequence of role instances.

Similarly, there are two rules for method invocation. The method invocation
reduces to the expression of the method body, substituting all the parameters x̄
with the argument expressions ē and the special variable this with the receiver
of method invocation. The rule R-RINVK shows the case of role method invo-
cation, where the variable super is also substituted with the receiver of method
invocation (removing type casting). The rule R-BIND shows that a newBind ex-
pression takes a class instance as an argument, creates a role instance, and binds
it with the argument class instance. The rule R-UNBIND shows that an unbind
expression reduces to the receiver class instance of unbind, removing the desig-
nated role (by r̄ − r, we mean the role r is removed from the sequence r̄). The
rule R-SWAP shows that a swap expression takes a class instance as an argument
1 We use new X(ē) and (new X(ē), ·) interchangeably.



fields(A) = T̄ f̄

(new A(ē), r̄).fi −→ ei

(R-FIELD)

fields(X.R :: C) = T̄ f̄ (new X(d̄)).R(ē) ∈ r̄ b̄, ē = c̄

((X.R)(new C(b̄), r̄)).fi −→ ci

(R-RFIELD)

mbody(m, A) = (x̄, e0)

(new A(ē), r̄).m(d̄) −→ [d̄/x̄, (new A(ē), r̄)/this]e0

(R-INVK)

mbody(m, X.R :: C) = (x̄, e0) (new X(d̄)).R(c̄) ∈ r̄

((X.R)(new C(ē), r̄)).m(d̄) −→
[d̄/x̄, (X.R)(new C(ē), r̄)/this, (new C(ē), r̄)/super]e0

(R-RINVK)

(new X(b̄)).R(d̄) 6∈ r̄

(new X(b̄)).R.newBind((new C(ē), r̄), d̄) −→
(new C(ē), r̄(new X(b̄)).R(d̄))

(R-BIND)

(new X(ē)).R(d̄) ∈ r̄

((X.R)(new C(c̄), r̄)).unbind() −→
(new C(c̄), r̄ − (new X(ē)).R(d̄))

(R-UNBIND)

(new X(ē)).R(ē′) ∈ r̄

((X.R)(new C(c̄), r̄)).swap((new D(d̄), s̄))
−→ (new D(d̄), s̄(new X(ē)).R(ē′))

(R-SWAP)

Fig. 5. Reduction rules

and binds it with the designated role, removing the class instance that is the
receiver of swap from the context instance where the designated role resides.

Reduction rules may be applied to any subexpressions of an expression, so
we also need the obvious congruence rules, which are omitted in this paper.

Typing. The typing rules for ε expressions are shown in Fig.6. An environment
Γ is a finite mapping from variables to types, written x̄ : T̄ . The typing judgment
for expressions has the form Γ ` e : T , read “in the environment Γ , expression
e has type T .”

The rules are syntax directed, with one rule for each form of expressions.
The typing rules for method invocations and constructors check that each actual
parameter has a type of the corresponding formal parameter. The rule T-INVK

checks that the type of receiver of method invocation may be an interface type,
thus method call to super is allowed. The rule T-NEW checks that all the role
instances with which the class instance binds are also well-typed; i.e., the context



Expression typing:

Γ ` e0 : S ftype(f, S) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : TS Γ ` ē : S̄
mtype(m, TS) = T̄ → T S̄<:T̄

Γ ` e0.m(ē) : T
(T-INVK)

fields(C) = T̄ f̄
Γ ` ē : S̄ S̄<:T̄

for rj ∈ r̄ rj = (new Xj(c̄j)).Rj(d̄j)
Γ ` new Xj(c̄j) : Xj

fields(X.R) = T̄j ḡj

Γ ` d̄j : S̄j S̄j<:T̄j

Γ ` (new C(ē), r̄) : C
(T-NEW)

Γ ` e : C bindable(X.R, C)
Γ ` e0 : X S̄<:T̄

fields(X.R) = T̄ f̄ Γ ` d̄ : S̄

Γ ` e0.R.newBind(e, d̄) : C
(T-BIND)

Γ ` x : Γ (x) (T-VAR)

Γ ` e : X.R :: C

Γ ` e.unbind() : C
(T-UNBIND)

Γ ` e : X.R :: C
Γ ` d : D bindable(X.R, D)

Γ ` e.swap(d) : D
(T-SWAP)

fields(X) = T̄ f̄ Γ ` ē : S̄
S̄<:T̄

Γ ` new X(ē) : X
(T-CNEW)

Γ ` e : C

Γ ` (X.R)e : X.R :: C
(T-CAST)

Wellformed definitions:

x̄ : T̄ , this : C ` e0 : T0

class C � D{ · · · }
T0 m(T̄ x̄){ return e0; } OK IN C

(T-METHOD)

M̄ OK IN C

class C � D{ T̄ f̄ ; M̄} OK

(T-CLASS)

x̄ : T̄ , this : X.R, super : { M̄I } ` e0 : T0

context X { · · · L̄R}
role R { M̄I }{ · · · } ∈ L̄R

T0 m(T̄ x̄){ return e0; } OK IN X.R
(T-RMETHOD)

M̄ OK IN X.R

role R requires { M̄I }{ T̄ f̄ ; M̄ }
OK IN X

(T-ROLE)

x̄ : T̄ , this : X ` e0 : T0

context X { · · · }
T0 m(T̄ x̄){ return e0; } OK IN X

(T-XMETHOD)

M̄ OK IN X L̄R OK IN X

context X { T̄ f̄ ; M̄ L̄R} OK

(T-CONTEXT)

Fig. 6. Typing rules



instance of each role is well-typed, and each actual parameters of each role
constructor has a type of the corresponding formal parameter. The rules T-
BIND and T-SWAP check that the receiver role and argument class instance of
newBind and swap, respectively, are compatible.

The type system assures that the receiver of newBind is a context, and the
type of receiver of unbind and swap is a mixin composition of a role type and a
class type, i.e., only (role) type casting expressions can be a receiver of unbind
and swap operations.

Finally, we show the typing rules for method declarations, class declarations,
context declarations, and role declarations. The rules for wellformed definitions
are also shown in Fig.6. The type of the body of a method declaration is a
subtype of the return type. The special variable this is bound in every method
declaration, and for every method declaration in roles, a variable super is also
bound. A class declaration is wellformed if all the methods declared in that class
are wellformed. A role declaration is wellformed if all the methods declared in
that role are wellformed. A context declaration is wellformed if all the methods
and roles declared in that context are wellformed.

Finally, we show the properties of ε, which is every well-typed expression
evaluates to a value or an expression containing casts, newBind, unbind, or swap
that cannot be reduced further.

Theorem 1 (Subject Reduction). If Γ ` e : T and e −→ e′, then Γ ` e′ : T ′

for some T ′ <: T .

Theorem 2 (Progress). If ∅ ` e : T and e is neither (1) a value, (2) an
expression containing (X.R)(new C(ē), r̄) where (new X(b̄)).R(d̄) 6∈ r̄ for some
b̄, d̄, (3) an expression containing e0.R.newBind((new C(ē), r̄)) where e0.R(d̄) ∈ r̄
for some d̄, (4) an expression containing ((X.R)(new C(ē), r̄)).unbind() where
(new X(b̄)).R(d̄) 6∈ r̄ for some b̄, d̄, and (5) an expression containing
((X.R)(new C(ē), r̄)).swap((new D(c̄), s̄)) where either (new X(b̄)).R(d̄) ∈ s̄ or
(new X(b̄)).R(d̄) 6∈ r̄ for some b̄, d̄, then e −→ e′ for some e′.

Remark. Because of ε’s ability to assume and discard roles at run time, the
progress theorem shows that there are some unreliabilities associated to adapt-
able objects. The result shows that we have to accept the possibility that access
to role’s fields or methods or newBind/unbind/swap operations can fail at run
time. In the full language, of course, such a failure does not stop whole the pro-
gram; it generates an exception that can be caught by a surrounding exception
handler.

One may consider that a more satisfactory type soundness result would be
obtained by changing the typing rules. For example, we may change the rule T-
NEW to make the result type be (C, r̄) so that the T-BIND rule can check that in
the type (C, r̄) of newBind’s first argument e, there are no instance of X.R in r̄.
However, it is hard to make this approach cooperate with other constructs such
as if statements. With imperative features, some dynamic checking should be
necessary. Even in purely functional languages, there may be a situation where



we want to change which role the class instance is bound with according to
the condition of if expression, but putting emphasis on type-safety prevents
providing such flexibility. On the other hand, EpsilonJ’s way of thinking is to
provide convenient idioms such as downcasting that most conventional languages
support, to make programmers flexibly bind roles and objects at their own risk.
To our knowledge there are no pieces of work on object adaptation that carefully
inspect the semantics of downcasting.

4 Discussions and Related Work

While developing ε, we found some significant differences between EpsilonJ and
ε. Firstly, in ε every role instance binds with a class instance, and role instance
methods and fields can be accessed only through type casting. EpsilonJ does
not hold this property and we can write unsafe programs by explicitly access-
ing role instances. Another contribution of this work w.r.t. EpsilonJ is that it
provides solid information for language processor implementation. For example,
current implementation of EpsilonJ is based on reflective APIs, which results in
significant performance degradation [26]. On the other hand, ε indicates that we
can employ a more “natural” way to implement the language; e.g. a class may
have a field that contains a set of role instances with which the class instance
binds. Furthermore, type casting is realized as an operation that selects a role
instance from that set, and super calls are modeled as delegations. Indeed, we
have developed an EpsilonJ translator to Java based on this idea [20].

The programming language powerJava[3] is a quite similar language with
EpsilonJ, in that roles and collaboration fields are the first class constructs,
interaction between roles are encapsulated, and objects can participate in the
interaction by assuming one of its roles. As in ε, the type of role depends on the
enclosing context instance. However, powerJava lacks the feature of role groups
that is a powerful mechanism of getting role instances associated with the context
instance reflectively. Furthermore, no formalization is given for powerJava.

Delegation Layers[21] and Object Teams[14] provides more flexible object
based composition of collaborations. For example, Delegation Layers combines
the mechanism of delegation[18, 22] and virtual classes[19, 7], or Family Poly-
morphism[10]; roles may be represented by virtual classes, and composition is
instance-base using delegation mechanism. Both of these approaches, however,
do not successfully represent object adaptation described in this paper. For ex-
ample, in ε the object after assuming a role may dynamically throw the role
away, and even the thrown role may be assumed by another object and states
held in the role instance are taken over by the latter object.

There are pieces of literature that formalize the feature of extending ob-
jects at run-time. Ghelli presented foundations for extensible objects with roles
based on Abadi-Cardelli’s object calculi[1], where coexistence of different meth-
ods introduced by incompatible extensions is considered [12]. Gianantonio et al.
presented a calculus λObj+[13], an extension of λObj[11] with a type assign-
ment system that allows self-inflicted object extension still statically catching



the “message not found” errors. Drossopoulou et al. proposed a type-safe core
language Fickle[9] that allows re-classification of objects, a mechanism of dy-
namically changing object’s belonging classes which share the same “root” su-
perclass. On the other hand, ε focuses on a foundation of object adaptation for
Java-like languages (based on FJ) and the feature of assuming roles that are
thrown by other objects (by swap operation).

Mixins[6, 2, 17] are similar to roles in EpsilonJ in that mixins form partial
definitions that can be reused with a number of classes that conform the re-
quirements of mixins. Even though mixin composition is originally performed
at compile time, dynamic composition of mixins is also studied in a core calcu-
lus[4], and such kind of object level inheritance is also studied as wrappers[8, 5].
Dynamic trait (a stateless mixin) substitution is also studied in [23]. All of these
pieces of work put more emphasis on type-safety, while ε supports more sophis-
ticated mechanism such as the swap operation and object level downcasting to
roles.

EpsilonJ supports context-oriented programming (COP)[15] in that contexts
(layers in COP terms) are named first-class entities that can be referred to
explicitly at run-time, and context-dependent object behavior can be changed
by activating/deactivating contexts from anywhere in the code. In EpsilonJ, such
activation/deactivation is performed by type casting.

5 Concluding Remarks

This paper reports a minimum core calculus of Epsilon model that has the no-
table feature of representing object adaptation. The calculus ε provides a precise,
formal definition of all key essential features of Epsilon model. Its type system
assures that the computation does not go wrong, even though some exceptional
cases concerning downcasting exist. The formalization clarifies the essential fea-
tures of object adaptation and provides solid information for program analysis
and language processor implementation. For example, ε suggests a natural way
to implement EpsilonJ, which has been partly achieved by the latest implemen-
tation.
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