
McJava – A Design and Implementation of
Java with Mixin-Types

Tetsuo Kamina and Tetsuo Tamai

University of Tokyo
3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan

{kamina,tamai}@graco.c.u-tokyo.ac.jp

Abstract. A programming construct mixin was invented to implement
uniform extensions and modifications to classes. Although mixin-based
programming has been extensively studied both on the methodological
and theoretical point of views, relatively few attempts have been made
on designing real programming languages that support mixins. In this
paper, we address the issue of how to introduce a feature of declaring a
mixin that may also be used as a type to nominally typed object-oriented
languages like Java. We propose a programming language McJava, an ex-
tension of Java with mixin-types. To study type-soundness of McJava,
we have formulated the core of McJava with typing and reduction rules,
and proved its type-soundness. We also describe a compilation strategy
of McJava that translates McJava programs to Java programs thus even-
tually making it runnable on standard Java virtual machines.

1 INTRODUCTION

Object-oriented programming languages like Java and C# offer class systems
that provide a simple and flexible mechanism for reusing collections of program
pieces. Using inheritance and overriding, programmers may derive a new class
by specifying only the elements that are extended and modified from the original
class. However, a pure class-based approach lacks a mechanism of abstracting
uniform extensions and modifications to multiple classes.

A programming construct mixin (also known as abstract subclass) was in-
vented to implement modules that provide such uniform extensions and modi-
fications [20]. This construct provides much reusability because a mixin makes
it possible to add common features (that will be duplicated in a single inheri-
tance hierarchy) to a variety of classes. Mixin-based programming, popularized
by CLOS [17], has been studied both on the methodological and theoretical
point of views [8, 9, 4, 7, 12]. Small core languages that support mixins or mixin
modules are also proposed [13, 11, 16]. Despite the existence of these extensive
studies, relatively few attempts are made on designing real programming lan-
guages that support mixins with notable exception of the language Jam [3] that
integrates mixins with Java.1

1 We will note differences between Jam and our approach in section 5.

In many cases, a mixin is considered as a means for providing uniform ex-
tension to classes; however, some mixin-based systems also allow a mixin to be
composed with other mixins (e.g. [13]). Composition of two mixins produces
another mixin that has both features of its constituents. It can be regarded
as a kind of inheritance in the form of mixin composition, which enhances the
reusability of mixins still further.

In this paper, we address how to add mixin-types, a mechanism of declar-
ing a mixin that may also be used as a type, to nominally typed, mainstream
object-oriented languages like Java. We present a programming language Mc-
Java.2 McJava has the following features; (1) mixins are explicitly supported as
a language feature, and mixin names are used as types; (2) higher order mixins
(mixins composed with other mixins) are supported, and flexible subtyping rules
among subsequences of composition are provided, that promotes much flexible
code reuse; (3) mixin composition is a subject to type-checking.

To study type-soundness of McJava, we have developed Core McJava, a small
calculus for McJava that is based on FJ [15], a tiny subset of Java. Because Core
McJava is very small, it is suitable for focusing on type-checking issues. We have
proved the type-soundness theorem of Core McJava, that provides an assurance
that McJava type system is sound.

Because McJava is designed as an extension of Java, it is desirable that Mc-
Java programs may run on the standard JVM; however, owing to its flexibility of
subtyping, how to compile McJava programs to JVM is not so straightforward.
Because Java does not allow a class to inherit from multiple classes, McJava
subtyping must be linearized in the compilation. This linearization imposes un-
necessarily deep inheritance chains to the compiled program. In this paper, we
also present a compilation strategy of McJava, and show an optimization algo-
rithm by eliminating unused types from the inheritance chains. Based on this
strategy, we implemented a prototype version of McJava compiler that type-
checks McJava programs and translates them into Java programs thus making
it runnable on the standard JVM.

We summarize the contributions of this paper:

– Introducing mixins into a mainstream, statically-typed language.
– Including higher order mixins and mixin-based subtyping.
– Establishing the soundness of the type system.
– Devising a compilation strategy and optimization.

2 AN OVERVIEW OF MCJAVA

Mixin declarations and mixin-types. To demonstrate how a mixin is de-
clared in McJava, we start with a very simple example. Figure 1 shows a decla-
ration of mixin Color. This mixin provides “color” feature that is intended to
be composed with widget classes.

A statement beginning with a keyword mixin is a mixin declaration. A mixin
declaration has the following form:
2 Mixin-based Compositions for Java.

interface WidgetI { void paint(Graphics g); }

mixin Color requires WidgetI {

int color;

void paint(Graphics g) {

g.setColor(this);

super.paint(g);

... }

void setColorValue(int color) { this.color=color; }

int getColorValue() { return this.color; }

}

Fig. 1. A color mixin

mixin X [requires I] { ... }
where X denotes the name of mixin and I denotes the interface that the mixin
requires. This means that classes that implement interface I can be composed
with mixin X. For example, both class Label and class TextField, declared as

class Label implements WidgetI { void paint(Graphics g) { .. }}
class TextField { void paint(Graphics g) { ... } }

can be composed with mixin Color, as they implement interface WidgetI. Note
that, it is not necessary for these classes to explicitly declare that they implement
interface WidgetI, as shown by class TextField. A class that implicitly imple-
ments a paint method (i.e. a class that has a void paint() method without
declaring implements WidgetI) may also be composed with mixin Color.3

When a required interface is declared in a mixin, methods are to be imported
to the mixin from a class to be composed. For example, the paint method
in mixin Color invokes super.paint(g) that results in invocation of paint
declared in Color’s “superclass”. McJava also allows an anonymous interface to
appear in requires clause for more handy syntax:

mixin Color requires { void paint(graphics g); } { ... }

If a mixin requires no interfaces (i.e. a mixin that imports no methods), we may
omit the requires clause.

A composition of mixin Color and class Label is written as Color::Label.
This composition is regarded as a subclass that is derived from the parent Label
class, with subclass body declarations being the same as the body of mixin
Color. Similarly, a composition Color::TextField is regarded as a subclass of
TextField. In this sense, a mixin is a uniform extension of classes that may be
applied to many different parent classes.
3 Note that the requires clause of a mixin declaration is quite different from
implements clause of ordinary class declarations in that a required interface in mixin
declaration is not used as a type but used as a constraint. In fact, there is no subtype
relation between mixin Color and interface WidgetI.

interface WidgetI { void paint(Graphics g); }

mixin Font requires WidgetI {

String font;

void paint(Graphics g) {

g.setFont(this);

super.paint(g);

... }

void setFontName(String font) { this.font=font; }

String getFontName() { return this.font; }

}

Fig. 2. A Font mixin

Besides this modularity, McJava also provides the useful feature of mixin-
types, which means a declared mixin is also used as a type. It is to be noted that
using a mixin as a type is often useful to abstract all the results of composing the
mixin with other classes and mixins. We may write the name Color, for example,
in a formal parameter of a method declaration that results in a method that takes
an instance of all the results of composing mixin Color with composable classes
as an argument.

As an abstract class in Java cannot be instantiated, it is forbidden to create
an instance of an abstract subclass (i.e. a mixin) in McJava.

Higher order mixins and subtyping. In McJava a mixin may also be com-
posed with a mixin. For example, the previous mixin Color may be composed
with mixin Font declared in Figure 2. This composition, written as Color::Font,
is regarded as a mixin that has both features of Color and Font.

A mixin Color may also be composed with a composition Font::Label re-
sulting in a new composition Color::Font::Label. The composition operator
:: is associative, that is a result of composing a mixin Color with a composition
Font::Label, written Color::(Font::Label), is the same as (Color::Font)::
Label, a result of composing Color::Font with Label (recall that a composition
of a mixin and another mixin is also regarded as a mixin).

A composition Color::Font::Label provides all the methods declared in
Color, Font, and Label. In McJava, the order of method lookup for composi-
tions is well-defined. If a method paint is searched on Color::Font::Label,
for instance, Color is searched first, then Font, followed by Label. Because the
order of method lookup controls the behavior [18] of mixin compositions, the
composition operator :: is not commutative. For instance, Color::Font is not
the same type as Font::Color, because the behavior of each composition may
be different.

One of the novel features of McJava is the flexibility of its subtype rela-
tion over compositions. In McJava, a composition is a subtype of all its con-
stituent. For example, Color::Font::Label is a subtype of Label, Font, and
Color. It is also a subtype of its subsequences, Font::Label, Color::Font and

(maybe somewhat surprisingly) Color::Label. Because the operator :: is not
commutative, the order of composition is significant (i.e. Color::Font is not
a subtype of Font::Color). The further reason of this restriction is, if we do
not require respecting order in subtyping between sequences, Color::Font is a
subtype of Font::Color that is a subtype of Color::Font. This means subtype
relation is no longer partial order because, as mentioned earlier, Color::Font
6= Font::Color, which will confuse many Java users. However, it is interesting
to investigate whether the type system remains sound with this more flexible
definition of composition subtyping. This issue remains as one of our future
work.

The subtyping system proposed here enhances much reusability of code.
Consider the situation where we use normal Java to extend a class Label to
FontLabel, then further to ColorFontLabel. Suppose, we also extend Label to
ColorLabel independently. In Java, however, ColorFontLabel is not a subtype
of ColorLabel.

Mixin composability. Adding mixin-types to Java type system requires the
type-checker to perform more sophisticated type-checking. We briefly summarize
here what McJava type-checker does to check the well-typedness of mixin com-
positions. To ensure that compiled McJava programs run safely, the type-checker
must check whether the following requirements are met:

– For all the compositions X1:: · · · ::Xn::C, where X1, · · · , Xn are mixins and
C is a class, the composition X2:: · · · ::C must implement all the interfaces
that the mixin X1 requires.

– For all the compositions X::T, where X is a mixin and T is a mixin, a class,
or a composition, if X declares a method m and a method m’ with the same
name m and the same signature is also declared in T, then the return type
of m must be the same as the type of m’.

The first rule ensure that no “method not understood” error occurs at run-time.
The second rule corresponds to the Java rule on overriding. In other words, if
the mixin X accidentally “overrides” a method declared in T with the different
return type, the compiler reports an error.

3 CORE CALCULUS OF MCJAVA

To provide an assurance that McJava type system is sound, we have developed
Core McJava, a small calculus of McJava that is suitable for proving the type
soundness theorem.

The design of Core McJava is based on FJ [15], a minimum core language of
Java. FJ is a very small subset of Java, focusing on just a few key constructs. For
example, FJ constructors always take the same stylized form: there is one param-
eter for each field, with the same name as the field. FJ provides no side-effective
operations, that means a method body always consists of return statement fol-
lowed by an expression. Because FJ provides no side-effects, the only place where

T ::= X̄ :: C | X̄
LC ::= class C extends X̄ :: C

{T̄ f̄; KC M̄}
LX ::= mixin X requires I

{T̄ f̄; KX M̄}
LI ::= interface I { M̄I; }

KC ::= C(S̄ ḡ, T̄ f̄)
{super(ḡ); this.f̄=f̄;}

KX ::= X(T̄ f̄){ this.f̄=f̄;}
M ::= T m(T̄ x̄){ return e;}

MI ::= T m(T̄ x̄)
e ::= x | e.f | e.m<T̄>(ē)

| new X̄ :: C(ē)

Fig. 3. Core McJava syntax

T <: T (S-REFL)

T1 :: · · · :: Tn <: T2 :: T3 :: · · · :: Tn

<: T1 :: T3 :: · · · :: Tn

· · ·
<: T1 :: T2 :: · · · :: Tn−1

(S-COMP)
T <: S S <: U

T <: U
(S-TRANS)

class C extends X̄ :: D {...}
C <: X̄ :: D

(S-CLASS)

Fig. 4. Subtype relation

assignment operations may appear is within a constructor declaration. In FJ, all
the fields are initialized at the object instantiation time. Once initialized, an FJ
object never changes its state. FJ does not support modifiers of members and
constructors, that means all the members and constructors of classes are public.
Interfaces are also not supported by FJ.

Core McJava shares the same features of FJ explained above. In the following
subsections, we present the syntax and operational semantics of Core McJava
and its type soundness theorem.

Syntax. The abstract syntax of Core McJava is given in Figure 3. In this
paper, the metavariables d and e range over expressions; KC and KX range over
constructor declarations; m ranges over method names; M ranges over method
declarations; C and D range over class names; X and Y range over mixin names;
R, S, T , U and V range over type names; I ranges over interface names; x ranges
over variables; f and g range over field names. As in FJ, we assume that the
set of variables includes the special variable this, which is considered to be
implicitly bound in every method declaration. Unlike full McJava, and as in
FJ, Core McJava does not allow classes to implement interfaces; however, Core
McJava provides interfaces that are used only in the requires clause. This is a
primary feature of McJava that cannot be excluded from the core calculus.

In Core McJava, a method invocation expression e0.m(ē) is annotated with
the static types T̄ of m’s arguments, written e0.m<T̄>(ē). This annotation is nec-
essary because, unlike FJ, Core McJava actually provides method overloading.
To capture the McJava’s feature of overloaded method resolution, determining
which overloaded method to invoked at compile time, a method invocation ex-
pression necessarily retains the static types of its arguments. We include this

feature in Core McJava, because it is crucial for the problem we are studying.4

Because of this condition, Core McJava is not a subset of McJava whereas FJ is
a subset of Java; instead, we view Core McJava as an intermediate language to
which the user’s programs in McJava are translated. This translation is straight-
forward.

We write f̄ as a shorthand for a possibly empty sequence f1, · · · , fn and
write M̄ as a shorthand for M1 · · ·Mn. The length of a sequence x̄ is written
as #(x̄). Empty sequences are denoted by ·. Similarly, we write “T̄ f̄” as a
shorthand for “T1 f1, · · · , Tn fn”; “T̄ f̄;” as a shorthand for “T1 f1; · · ·Tn fn;”;
“this.f̄ = f̄;” as a shorthand for “this.f1 = f1; · · · this.fn = fn;”; X̄ as a
shorthand for X1 :: · · · :: Xn.

As in Figure 3, there are two kinds of types: X̄ and X̄ :: C. The former
denotes a mixin-mixin composition that is generated by composing mixin names,
while the latter denotes mixin-class composition that is a result of composing
mixin names (possibly empty sequence) and a class name. The former is a mixin
that cannot be instantiated, while the latter is a concrete class that can be
instantiated.

We write T <: U when T is a subtype of U . Subtype relations between
classes, mixins, and compositions are defined in Figure 4, i.e., subtyping is a
reflexive and transitive relation of the immediate subclass relation given by the
extends clauses in class declarations and mixin compositions.

Class table. A Core McJava program is a pair of (CT, e) of a class table CT and
an expression e. A class table is a map from class names and mixin names to class
declarations and mixin declarations. The expression e may be considered as the
main method of the “real” McJava program. The class table is assumed to satisfy
the following conditions: (1) CT (C) = class C ... for every C ∈ dom(CT);
(2) CT (X) = mixin X ... for every X ∈ dom(CT); (3)Object 6∈ dom(CT);
(4) T ∈ dom(CT) for every class name and mixin name appearing in ran(CT);
(5) there are no cycles in the subtype relation induced by CT ; (6) there are no
field hidings of a class or a mixin by its subtype, whose subtyping relation is
induced by CT .

In the induction hypothesis, we abbreviate CT (C) = class C... and CT (X) =
mixin X ... as class C ... and mixin X ..., respectively.

Auxiliary functions. For the typing and reduction rules, we need a few aux-
iliary definitions, given in Figure 5 and 6.

The fields of type T , given in Figure 5, written fields(T), is a sequence T̄ f̄
pairing the type of each field with its name. If T is a class, fields(T) is a se-
quence for all the fields declared in class T and all of its superclasses. If T is
a mixin, fields(T) is a sequence for all the fields declared in that mixin. If T
is a composition, fields(T) is a sequence for all the fields declared in all of its
constituent mixins and a class. For the field lookup, we also have the definition
4 We have solved the overloading problem that was faced by Jam.

class C extends X̄ :: D {T̄ f̄; KC M̄}
fields(X̄ :: D) = S̄ ḡ

fields(C) = S̄ ḡ, T̄ f̄

mixin X requires I {T̄ f̄; KX M̄}
fields(X) = T̄ f̄

fields(Object) = ·

fields(X) = T̄ f̄ fields(T) = S̄ ḡ

fields(X :: T) = S̄ ḡ, T̄ f̄

fields(T) = T̄ f̄

ftype(fi, T) = Ti

Fig. 5. Field lookup

of ftype(fi, T) that is a type of field fi declared in T . In contrast with McJava,
field hiding is not allowed in Core McJava.

The type of method m declared in type T with argument types T̄ is given
by mtype(m, T̄ , T). The function mtype is defined in Figure 6 by S that is a
result type. If T is a composition, the left operand of :: is searched first. If m
with argument types T̄ is not found in T , we define it nil. The type of method
m in interface I is also defined in the same way. Similarly, the body of method
m declared in type T with argument types T̄ , written mbody(m, T̄ , T), is a pair,
written x̄.e of a sequence of parameters x̄ and an expression e. As mentioned
earlier, in contrast with FJ, method overloading is allowed in Core McJava.

Typing. The typing rule for compositions is given in Figure 7. A composition
is well-formed if (1) there are no fields declared with the same name both in
the left component and the right component of the composition, (2) there is no
method collision, that is, if some methods are declared with the same name and
with the same argument types in the left and the right, the return type of both
methods must be the same, and (3) for all the methods declared in the interface
that is required by the left mixin, the right operand of the composition declares
the methods named and typed as the same as the interface. Well-formedness of
class types and mixin types are straightforward and omited in this paper.

Figure 8 shows the typing rules for expressions. An environment Γ is a fi-
nite mapping from variables to types, written x̄ : T̄ . The typing judgment for
expressions has the form Γ ` e : T , read “in the environment Γ , expression e
has type T”. These rules are syntax directed, with one rule for each form of
expressions. Most of them are straightforward extension of the rules in FJ. The
typing rules for constructor and method invocations check that the type of each
argument is a subtype of the corresponding formal parameter. The typing rule
for constructor invocation also assures that there are no instances of mixins and
mixin-mixin compositions.

Figure 9 shows the typing rules for methods, classes and mixins. The type
of the body of a method declaration is a subtype of the declared type, and, for
a method in a class, the static type of the overriding method is the same as
that of the overriden method. A class definition is well-formed if all the methods
declared in that class and the constructor are well-formed. Similarly, a mixin is
well-formed if all the methods declared in that mixin are well-formed.

mtype(m, T̄ , Object) = nil

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mtype(m, S̄, C) = S

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mtype(m, S̄, C) = mtype(m, S̄, X̄ :: D)

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mtype(m, S̄, X) = S

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mtype(m, S̄, X) = mtype(m, S̄, I)

interface I {M̄I;} T m(T̄ x̄) ∈ M̄I

mtype(m, T̄ , I) = T

interface I {M̄I;} T m(T̄ x̄) 6∈ M̄I

mtype(m, T̄ , I) = nil

mtype(m, T̄ , X) = T

mtype(m, T̄ , X :: T0) = T

mtype(m, T̄ , X) = nil

mtype(m, T̄ , T0) = T

mtype(m, T̄ , X :: T0) = T

mbody(m, T̄ , Object) = nil

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mbody(m, S̄, C) = x̄.e

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mbody(m, S̄, C) = mbody(m, S̄, X̄ :: D)

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mbody(m, S̄, X) = x̄.e

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mbody(m, S̄, X) = nil

mbody(m, T̄ , X) = x̄.e

mbody(m, T̄ , X :: T) = x̄.e

mbody(m, T̄ , X) = nil

mbody(m, T̄ , T) = x̄.e

mbody(m, T̄ , X :: T) = x̄.e

Fig. 6. Method lookup

Dynamic semantics. The reduction relation is of the form e −→ e
′
, read

“expression e reduces to expression e
′
in one step”. We write−→∗ for the reflexive

and transitive closure of −→.

The reduction rules are given in Figure 10. There are two reduction rules, one
for field access and one for method invocation. The field access reduces to the
corresponding argument for the constructor. Due to the stylized form of object
constructors, the constructor has one parameter for each field, in the same order
as the fields are declared. The method invocation reduces to the expression of
the method body, substituting all the parameter x̄ with the argument expres-
sions d̄ and the special variable this with the receiver (we write [d̄/x̄, e/y]e0 for
the result of substituting x1 by d1,...,xn by dn and y by e in e0). Note that a

fields(X) ∩ fields(T) = ∅
interface I {M̄I} (1) (2)
mixin X requires I { ... M̄ }

X :: T ok
(T-COMP)

where

(1) =
∀(S m(T̄ x̄){...}) ∈ M̄
mtype(m, T̄ , X) = mtype(m, T̄ , T) or
mtype(m, T̄ , T) = nil

(2) =
If T is a composition X̄ :: C, then
∀(U n(S̄ x̄)) ∈ M̄I

mtype(n, S̄, I) = mtype(n, S̄, T)

Fig. 7. Well-formed composition

Γ ` x : Γ (x) (T-VAR)

Γ ` e0 : S ftype(f, S) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : S mtype(m, S̄, S) = T
Γ ` ē : T̄ T̄ <: S̄

Γ ` e0.m<S̄>(ē) : T
(T-INVK)

fields(X̄ :: C) = S̄ f̄ Γ ` ē : T̄
T̄ <: S̄ X̄ :: C ok

Γ ` new X̄ :: C(ē) : X̄ :: C
(T-NEW)

Fig. 8. Expression typing

x̄ : T̄ , this : C ` e0 : U0 U0 <: T0

class C extends X̄ :: D {...}
T0 ok T̄ ok

if mtype(m, T̄ , X̄ :: D) = S0, then S0 = T0

T0 m(T̄ x̄){ return e0; } OK IN C
(T-CMETHOD)

x̄ : T̄ , this : X ` e0 : S0 S0 <: T0

T0 ok T̄ ok
mixin X requires I {...}

T0 m(T̄ x̄){ return e0; } OK IN X
(T-XMETHOD)

KC = C(S̄ ḡ, T̄ f̄){ super(ḡ);
this.f̄=f̄;}

fields(X̄ :: D) = S̄ ḡ M̄ OK IN C
X̄ :: D ok T̄ ok

class C extends X̄ :: D
{T̄ f̄; KC M̄} OK

(T-CLASS)
KX = X(T̄ f̄){ this.f̄=f̄;}

M̄ OK IN X T̄ ok

mixin X {T̄ f̄; KX M̄} OK

(T-MIXIN)

Fig. 9. Well-formed definitions

fields(X̄ :: C) = T̄ f̄

new X̄ :: C(ē).fi −→ ei

(R-FIELD)
mbody(m, T̄ , X̄ :: C) = x̄.e0

new X̄ :: C(ē).m<T̄>(d̄)
−→ [d̄/x̄, new X̄ :: C(ē)/this]e0

(R-INVK)

Fig. 10. Operational semantics

method lookup in method invocation uses static types of arguments, using type
annotations T̄ .

Properties. We show that Core McJava is type sound. The proof is given in
the preliminary version of this paper [16]. 5 Intuitively, the step of proving Core
McJava type soundness theorem is almost the same as that of FJ, but details
vary a little.

Theorem 1 (Subject Reduction). If Γ ` e : T and e −→ e
′
, then Γ ` e

′
: T

′

for some T
′

<: T .
5 In this paper we omit type casts from [16] because they are less relevant to what we

discuss in this paper.

class A {

int f(M m) { ... }

boolean f(M::C h) { ... } }

mixin M { // mixin M requires no interfaces

void g() {

int i = new A().f(this);

... }}

class Test {

public static void main(String args[]) {

new M::C().g(); }}

Fig. 11. An example program

Theorem 2 (Progress). Suppose e is a well-typed expression.

1. If e includes new X̄ :: C(ē).f as a subexpression, then fields(X̄ :: C) = T̄ f̄
and f ∈ f̄ for some T̄ and f̄ .

2. If e includes new X̄ :: C(ē).m<T̄>(d̄) as a subexpression, then mbody(m, T̄ , X̄ ::
C) = x̄.e0, ∅ ` d̄ : S̄ where S̄ <: T̄ , and #(x̄) = #(d̄) for some x̄ and e0.

To state type soundness formally, we introduce a value v of an expression e
by v ::= new X̄ :: C(ē) .

Theorem 3 (Core McJava Type Soundness). If ∅ ` e : T and e −→∗ e
′

with e
′
a normal form, then e

′
is a value v of e with ∅ ` v : U and U <: T .

4 IMPLEMENTING MCJAVA

So far, we have overviewed the semantics of McJava. In this section, we show a
compilation strategy from McJava programs to Java programs.

Outline of the compilation strategy. In order to explain the translation
process, we start with a simple example code shown in Figure 11.

At the first step, the translator creates a file A.java from a class A. Then, it
writes the body of class declaration into that file. At the beginning, the translator
just copies the body of class A into A.java. Eventually, the translator encounters
a composition type M::C that is not allowed in Java syntax. To compile this
composition, the translator generates a new class M C and replaces the occurrence
of M::C with M C. The class M C extends a class C and implements an interface M
that contains interface method declarations extracted from mixin M (Figure 12).
The resulting class and interface are as follows:

interface M { void g(); }
class M_C extends C implements M {

void g() { int i = new A().f((M)this); ... }}

Note that this, an argument of method invocation f, is type-casted to M.
This casting is required, because in the translation this has type M C that is

mixin X

int m() { ... }

class X_C

class C

int m() { ... }

interface X

int m();
copying body

extracting interface

Fig. 12. Translation into Java classes

X1_..._Xn

X2_...Xn X1_...Xn-1

... ...

... ...

X1_..._Xn_C

X2_...Xn_C

X1_...Xn-1_C

... ...

... ...
interfaces

...

classes

Fig. 13. Linearizing inheritance chain

subtype of both M and C, but M and C are not comparable. Without the type-
cast, if class C has another method String f(C m), the translated Java program
will be ill-typed.

The translator also replaces the occurrence of M::C with M C in the class
Test:

class Test {
public static void main(String args[]) {
new M_C().g(); }}

So far, a simple case is explained, but McJava supports higher order mixins
and flexible subtyping among them. We now describe a more general case. A
composition X1::· · · ::Xn, where each Xi (i ∈ 1 · · ·n) is a mixin, is translated
into an interface X1 · · · Xn that extends all its immediate super types (shown
by S-COMP in Figure 4). The body of this interface is empty. A composition
X1::· · · ::Xn::C, where each Xi (∈ 1 · · ·n) is a mixin and C is a class, is translated
into a class X1 · · · Xn C that implements interface X1 · · · Xn and extends all
its immediate super types other than X1 · · · Xn (i.e. its immediate super types
whose the rightmost operands of :: are C). Because a Java class can inherit
only a single class, the class X1 · · · Xn C cannot extends so many classes at
once; instead, they are linearized in a single inheritance chain (Figure 13)6. If
class C has constructors, the default constructor of C is private. In this case, the
McJava compiler writes constructor declarations that just invoke super in all
the descendant classes of C.7

Optimizing compilation. The major problem of McJava compilation strat-
egy explained above is, when we have a composition X1 :: · · · :: Xn :: C, then
6 Making X1 C be a subclass of X2 C seems to be harmful, when an X1 C’s method

overrides an X2 C’s method. To avoid this accidental overriding, the McJava compiler
inserts a code that checks the type of this by using the instanceof operators, to
make the appropriate body of method to be executed.

7 Currently McJava forbids to declare a constructor for mixins.

C

Z_C

Y_C

X_C

Y_Z_C

X_Z_C

X_Y_C

X_Y_Z_C

Z

Y

X

Y_Z

X_Z

X_Y

X_Y_Z

C

Z_C

Y_C

X_C

X_Y_Z_C

Z

Y

X

Fig. 14. Optimizing translation

we need to consider 2n combinations that preclude a scalable compilation al-
gorithm. Even though the situation where computing this combinations takes
unacceptable ammount of time (e.g. the situation to compose more than 10
mixins at once) seems to be practically rare in the real problems, the introduc-
tion of an unnecessarily deep inheritance chain by linearization may results in
critical run-time overhead. Indeed, the depth of inheritance becomes 2n with the
above algorithm.

Fortunately, type names that are not used in the source program can be
removed from the inheritance chain. Assume the situation where we have a type
X::Y::Z::C, but other compositions such as X::Y::C, Y::Z::C etc. are actually
not used in the program (Figure 14). In this case, type names appear inside
the dashed ovals can be removed from the inheritance chain, resulting in a new
inheritance chain that is shown in the right hand side of Figure 14. By using
this technique, almost all the overhead imposed by the linearization becomes
acceptable.

The algorithm of optimization is explained below:

1. McJava compiler prepares a table T that contains all the type names used
in the program. This process requires the whole program analysis.

2. Construct a connected graph graph(T) from a composition type T . For ex-
ample, graph(X :: Y :: Z :: C) becomes the left hand side of Figure 14.

3. For all the class types X̄ :: C that are not in T except the class C and
compositions that are composed with exactly one mixin, do the following
operations:

(a) Delete two edges (U, X̄ :: C) and (X̄ :: C, S), where both U and S are
class types, from graph(T).

(b) Insert a new edge (U, S) into graph(T).

4. For all the mixin types X̄ that are not in T , delete all the edges (Ui, X̄) and
(X̄, Si) from graph(T).

Evaluating the translation. Current McJava compiler does not support sep-
arate compilation. This does not necessarily mean that current McJava compiler
is impractical. Actually there are some practical systems that do not support
separate compilation such as some C++ compilers [1] and AspectJ compiler [5].
It is clear, however, that support for separate compilation is very helpful to dis-
tribute binary form of mixins. For this purpose, we are thinking of introducing
a stub generator that compiles mixins and a linker that composes the binary
mixins before load time.8

McJava compiler is backward compatible to standard Java compilers.9 That
is, every Java program that can be compiled with a standard Java compiler can
also be compiled with the McJava compiler.

Implementation status. At the moment we have developed a preliminary
version of McJava compiler that has some restrictions including that it does not
support access to Java standard libraries. The latest version of McJava compiler
is downloadable at http://kumiki.c.u-tokyo.ac.jp/~kamina/mcjava/.

5 RELATED WORK

Jam [3] is a smooth extension of Java with mixins. Jam gives semantics of mixin
compositions by translation to Java that is informally expressed by the copy
principle. Even though this semantics looks natural, it has a serious problem in
method overloading resolution, especially when an overloaded method is invoked
with this as an argument. For example, a Jam program written the same as
Figure 11 is not typable. This problem never occurs in McJava. Furthermore,
due to the copy principle, it is very difficult to add higher order mixins in Jam.

Another approach of implementing a mixin is to parameterize a superclass
of a generic class using a type parameter [23, 27, 22, 2]. One of the restrictions of
McJava that is not shared by the generic type approach is its disability to access
mixin’s superclass type inside the mixin, e.g.:

class Color<Widget extends WidgetI> extends Widget {
Widget f;
... }

We may partially solve this problem by adopting a coding convention to
make the classes composed with the mixin explicitly implement the constraint
(the required interface) of that mixin. Another possible design of McJava is to
impose a superclass of the mixin to explicitly implement the required interface. In
other words, the superclass must be a subtype of the required interface. However,
there is a tradeoff. The reason why we take the approach of structural constraint,
where a superclass of mixin must be a structural subtype of required interface, is
that it is more flexible for compositions. Mixins are often implemented after the
8 The idea is taken from Jiazzi [19].
9 Except that McJava reserves keywords mixin and requires.

implementation of possible superclasses. Imposing these classes to be a nominal
subtype of required interface is rather restrictive, because it would require re-
implementation of the original classes. Another difference between generic classes
and McJava is the flexibility of subtyping. Generic classes cannot capture the
full power of McJava type system, where a mixin may be used as a type, and
Color::Font is a subtype of both Color and Font.

Besides the feature of structural constraints on mixin’s superclasses, McJava
is a nominally typed class-based language, that means the name of a class (or
mixin) determines its subtype relationship. On the other hand, in object-oriented
languages with structural subtyping, the subtype relation between classes is deter-
mined by their structures. A core calculus of classes and mixins for structurally
typed language was proposed by Bono et al.[6]. Instead, we take a nominal ap-
proach, because the target language (Java) is nominally typed.

To our knowledge, a core calculus for mixin types extending Java was orig-
inally developed by Flatt et al.[13]. The novel feature of this calculus, named
MixedJava, is its ability to support hygienic mixins [2, 19]. Hygienic mixins use
the static type information when looking up a method, avoiding the problem of
method collision. This feature is achieved by changing the protocol of method
lookup: in MixedJava, each reference to an object is bundled with its view of
the object, the run-time context information. A view is represented as a chain
of mixins for the object’s instantiation type. It designates a specific point in the
full mixin chain, the static type of that object, for selecting methods during dy-
namic dispatch. Even though the proposal of hygienic mixins is useful, there is
no implementation of MixedJava. However, there exists two kinds of implemen-
tation of hygienic mixins [2, 19], each of them does not conform the McJava type
system either; without support for hygienic mixins, McJava defines very flexible
subtyping relations. For example, the subtype relation X :: Y :: C <: X :: C
is missing in MixedJava. Our work of adapting the implementation strategies
of hygienic mixins cited above to our McJava compiler is in progress, and the
result will be published in elsewhere.

Mixin modules [10], essentially motivated by the problem of interaction with
recursive constructs that cross module boundaries in module systems of func-
tional languages, mainly focus on facilitating reusing large scale programming
constructs such as frameworks [11]. Our work, on the other hand, mainly fo-
cuses on integrating mixin-types and its flexible subtyping with real program-
ming languages. The work [11] sacrifices mixin subtyping in favor of allowing
method renaming. MixJuice [14] is also independently proposed by Ichisugi et
al. to modularize large scale compilation unit.

Schärli et al. proposed traits [21], fine grained reusable components as build-
ing blocks for classes. Traits support method renaming that overcomes the prob-
lem of method collision. When traits are composed, the members of those traits
are “flattened” into one class, which also solves the ordering problem of mixins.
Our work, in contrast with traits, has more focus on declaring a mixin as a type,
and studying their subtype relations. We also would like to note that the order-
ing of mixins is useful particularly when we “extend” a parametrized superclass

with the same name of method as the superclass, and invoke it via super.m ,
where m is a method name.

Mixins may be used as vehicles to directly implement roles in terms of role
modeling [24]. Epsilon [26, 25], a role-based executable model, was also proposed
for this purpose. While Epsilon has a feature of dynamic object adaptation, we
consider McJava and its core calculus provides a bood basis for incorporating
static typing into Epsilon.

6 CONCLUSIONS

This paper reports the design and implementation of programming language
McJava that is an extension of Java with mixin-types. In McJava, a mixin is a
type, and a composition is a subtype of its constituents. McJava’s semantics is
different from Jam’s copy principle; we solved a bothersome problem of using
this inside mixins Jam faced, and provide a strong feature of higher order
mixins and flexible subtyping. We formally present a type system and operational
semantics of Core McJava, a small calculus of McJava, that gives an assurance
that McJava type system is sound.

Acknowledgements: The authors would like to thank Atsushi Igarashi, Hide-
hiko Masuhara and Etsuya Shibayama for their very helpful comments on the
earlier version of this paper. The research has been conducted under Kumiki
Project, supported as a Grant-in-Aid for Scientific Research (13224087) by the
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

1. GCC home page. http://gcc.gnu.org/.
2. Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-class approach to

genericity. In Proceedings of OOPSLA2003, pages 96–114, 2003.
3. Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam – A smooth extension

of java with mixins. In ECOOP 2000, pages 154–178, 2000.
4. Davide Ancona and Elena Zucca. A theory of mixin modules: Basic and derived

operators. Mathematical Structures in Computer Science, 8(4):401–446, 1998.
5. AspectJ. http://www.eclipse.org/aspectj/.
6. Viviana Bono, Amit Patel, and Vitaly Shmatikov. A Core Calculus of Classes and

Mixins. In Proceedings of ECOOP’99, LNCS 1628, pages 43–66, 1999.
7. Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Mul-

tiple Inheritance. PhD thesis, University of Utah, 1992.
8. Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA 1990,

pages 303–311, 1990.
9. Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proceedings

of the IEEE Computer Society International Conference on Computer Languages,
pages 282–290. IEEE Computer Society, 1992.

10. Dominic Duggan and Constantinous Sourelis. Mixin modules. In ICFP’96, pages
262–272, 1996.

11. Dominic Duggan and Ching-Ching Techaubol. Modular mixin-based inheritance
for application frameworks. In OOPSLA 2001, pages 223–240, 2001.

12. Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming
with units and mixins. In Proceedings of ICFP 1998, pages 98–104, 1998.

13. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-
ins. In POPL 98, pages 171–183, 1998.

14. Yuuji Ichisugi and Akira Tanaka. Difference-Based Modules: A Class-Independent
Module Mechanism. In Proceedings of ECOOP 2002, pages 62–88, 2002.

15. Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

16. Tetsuo Kamina and Tetsuo Tamai. A core calculus for mixin-types. In Foundations
on Object Oriented Languages (FOOL11), 2004. Revised version is available at
http://www.graco.c.u-tokyo.ac.jp/~kamina/papers/fool/kamina.pdf.

17. Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Arts of the Metaob-
ject Protocol. The MIT Press, 1991.

18. Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(6):1811–
1841, 1994.

19. Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi: New-age components
for old-fashioned Java. In Proceedings of OOPSLA2001, pages 211–222, 2001.

20. D. A. Moon. Object-oriented programming with flavors. In OOPSLA’86 Confer-
ence Proceedings: Object-Oriented Programming: Systems, Languages, and Appli-
cations, pages 1–8, 1986.

21. Nathanael Schärli, Steṕhane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable units of behavior. In ECOOP 2003, LNCS 2743, pages 248–274, 2003.

22. Yannis Smaragdakis and Don Batory. Implementing Layered Designs with Mixin
Layers. In Proceedings ECOOP’98, volume 1445 of Lecture Notes in Computer
Science, pages 550–570, 1998.

23. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
1997.

24. Tetsuo Tamai. Objects and roles: modeling based on the dualistic view. Informa-
tion and Software Technology, 41(14):1005–1010, 1999.

25. Tetsuo Tamai. Evolvable Programming based on Collaboration-Field and Role
Model. In International Workshop on Principles of Software Evolution (IW-
PSE’02), pages 1–5, 2002.

26. Naoyasu Ubayashi and Tetsuo Tamai. Separation of Concerns in Mobile Agent
Applications. In Metalevel Architectures and Separation of Crosscutting Conserns
– Proceedings of the 3rd International Conference (Reflection 2001), volume 2192
of Lecture Notes in Computer Science, pages 89–109, 2001.

27. Michael VanHislt and David Notkin. Using C++ templates to implement role-
based designs. In JSSST International Symposium on Object Technologies for
Advanced Software, pages 22–37. Springer-Verlag, 1996.

