
Selective Method Combination in
Mixin-Based Composition

Tetsuo Kamina Tetsuo Tamai
The University of Tokyo

3-8-1, Komaba, Meguro-ku, Tokyo,
153-8902, Japan

{kamina,tamai}@graco.c.u-tokyo.ac.jp

ABSTRACT
A mixin is a reusable module that provides uniform exten-
sions and modifications to classes. It is an abstract subclass
that is composable with a variety of superclasses. In mixin-
based composition, however, the problem of accidental over-
riding arises. A method declared in a mixin may accidentally
overrides its superclasses’ method. To tackle this problem,
we propose a new approach of method lookup that allows se-
lective method combination; that is, when we have multiple
methods with the same name and the same formal param-
eter types in a composition, we can select which method
to execute, and which method is called when there exists a
method call to super. This proposal is an extension of hy-
gienic mixins with stronger expressive power. This proposal
is implemented in McJava, an extension of Java with mixin-
types. Its compilation is achieved by source code translation
to Java thus making it runnable on a standard Java virtual
machine.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—inheritance

General Terms
Language design and implementation

Keywords
McJava, Accidental overriding, Hygienic mixins, Mixin-based
subtyping

1. INTRODUCTION
A mixin [3] is a reusable module that provides uniform ex-

tensions and modifications to classes. It is a partially imple-
mented subclass that is composable with a variety of “super-
classes.” Compared with single inheritance scheme, mixin-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

based composition provides much reusability because it has
an ability to add common features (that will be duplicated in
a single inheritance hierarchy) to a variety of classes. Mixin-
based composition has been popularized by CLOS [13] and
currently integrated with main-stream strongly typed object-
oriented languages [2, 8].

One problem of mixin-based composition is known as ac-
cidental overriding [1]. While a subclass in many object-
oriented languages explicitly declares its superclass, in mixin-
based composition, a mixin does not know which superclass
the mixin will be composed with. Therefore, when a user
of a mixin (who will be different from an implementor of
that mixin) tries to compose it with some other classes, it
is possible that a method declared in the mixin accidentally
overrides a method declared in the superclass.

In general, there are two kinds of overriding: intentional
overriding and accidental overriding. In the case of inten-
tional overriding, we know that a superclass has a method
that will be overridden. In this case, we explicitly declare
methods imported from the superclass (e.g. as explained in
the following sections, we can use requires clause for this
purpose in programming language McJava [8]), then over-
ride them in a mixin. In the case of accidental overriding,
on the other hand, we do not know that the superclass has
a method whose name and formal parameter types are the
same as those of a method declared in the mixin. This over-
riding is harmful because it accidentally changes the behav-
ior [10] of the superclass.

One way to avoid accidental overriding is to have a com-
piler reject a program that contains a composition with
accidental overriding. Of course, we can statically ana-
lyze whether there is accidental overriding or not. How-
ever, this approach limits the reusability of mixins. To pro-
mote reusability of mixins, mixins should be composed with
classes even when there exists accidental overriding. An-
other way to avoid accidental overriding is to select which
method to be invoked by using the context information that
encloses the method invocation. Furthermore, we should
also consider that, in Java-like languages, we may combine
the overriding method with the overridden (the original)
method by calling the latter method with super. If we allow
the selective method invocation as mentioned above, there
may exist multiple candidates for combination of methods1.
We need a new mechanism of method lookup.

In this paper, we propose a new approach to method
lookup that solves the accidental overriding problem. Our

1The source of the term “method combination” is CLOS [9].

class Person {

String _name;

String name() { return _name; }

}

mixin Employee requires { String name(); } {

String id, title;

String name() { return title+super.name(); }

String getID() { return id; }

}

mixin Student {

String id;

String getID() { return id; }

}

class Main {

public static void main(String[] args) {

Employee e =

new Student::Employee::Person();

String id = e.getID();

...

}

}

Figure 1: Accidental Overriding in McJava

approach allows selective method combination; that is, if we
have multiple candidates for method call to super, we can
select which method to be called. This selection is achieved
by using static type information that is equipped with a flex-
ible version of inheritance-based subtyping. We have imple-
mented this mechanism into McJava, an extension of Java
with mixin-types proposed by Kamina and Tamai [8]. Our
implementation technique is an extension of hygienic mix-
ins [5, 1, 12]. Since McJava provides very flexible subtyping
rules, applying the implementation techniques of hygienic
mixins is actually a non-trivial issue. In McJava, an im-
mediate superclass of a mixin in the run-time inheritance
chain may be different from the statically known superclass
thus requiring more sophisticated treatment in invoking a
superclass’s method.

Our approach may look specific only to be applied to Mc-
Java because it depends on McJava subtyping rules. How-
ever, some languages such as gbeta [4] allow similar mecha-
nism as McJava. We believe that the proposal of this paper
can be applicable to such languages. Furthermore, as shown
in the following sections, subtyping in McJava is a general-
ization of inheritance-based subtyping. When this subtyp-
ing scheme is introduced into other languages, the problem
treated in this paper always arises and the proposed solution
may be useful.

The rest of this paper is structured as follows. In section
2, we show the problem of accidental overriding and explain
why the selective method combination is required. In section
3, we propose a new method lookup mechanism that solves
the aforementioned problem. In section 4, we sketch how to
implement the proposed approach in the McJava compiler
that translates McJava programs to Java programs. Section
5 compares this work with other related work, and section
6 concludes.

2. THE PROBLEM OF ACCIDENTAL OVER-
RIDING

In Figure 1, we illustrate the problem of accidental over-
riding by using McJava programming language. The state-
ment beginning with mixin is a mixin declaration. A mixin
declaration has the following form:

mixin X [requires I] { ... }

where X denotes the name of mixin and I denotes the in-
terface that the mixin requires. This means that classes
that implement interface I can be composed with mixin
X. For example, class Person can be composed with mixin
Employee, because it implements the interface that the mixin
Employee requires(i.e. String name() method). The im-
ported methods declared in the requires clause can be re-
ferred in the body of mixin, e.g., super.name() called inside
Employee.name(). In other words, Employee intentionally
overrides the method String name().

Mixin Employee can be composed with class Person, and
this composition is written as Employee::Person. This com-
position is regarded as a subclass derived from the Person

class, with subclass body declaration being the same as the
body of Employee. In Figure 1, this composition is further
composed with another mixin Student.

The mixin Employee also declares method String getID()

that returns the identification number at the company, and
the mixin Student declares the same method that returns
the identification number at the school. In class Main, we
compose Student with Employee and Person and create its
instance (which means an employee who is also a student).
This instance is referred by variable e whose static type is
Employee. When getID() method is invoked on e, we ex-
pect Employee.getID() to be executed; however, if the nor-
mal method lookup rule of Java stipulating the most specific
method to be always selected is applied, Student.getID() is
called. Because it behaves differently from Employee.getID(),
the result of method call e.getID() does not satisfy the ex-
pectation of the user of e. Therefore, in this case the alter-
native method lookup scheme is required.

By preserving the static type information of variable e, we
can invoke Employee.getID() instead of Student.getID().
This mechanism is known as hygienic mixins [1, 12]. If we
adopt this scheme, there can be more than one method that
has the same name and the same formal parameter types on
that composition. We may select a method to be invoked
by using static type information. Furthermore, if we inten-
tionally override the getID() method in a possible subclass
of that composition, then there will exist multiple combina-
tions of methods: methods combined by calling the original
method with super. To show when this situation occurs, we
use the following example.

Suppose we have a mixin Id that imports a method String

getID() from a superclass, and intentionally override it.

mixin Id requires { String getID(); }{

String getID() { return super.getID(); }

...

}

This mixin implements a concern of identification, perform-
ing identification-related tasks. The getID() method de-
clared in that mixin calls super.getID() and returns its
result. This method is regarded as an abstract method that
can be called by other methods declared in that mixin. This
is a variety of template design pattern [6].

We can compose Id with Employee and Student, adding
identification-specific operations to those mixins. Further-
more, as shown previously, an employee may also become a
student. We have the following composition:

Id::Student::Employee p =

new Id::Student::Employee::Person();

processIdOfEmployee(p);

processIdOfStudent(p);

In this case, both of Employee and Student provides String
getID() method. Then, a question arises; when Id.getID()

executes the expression super.getID(), which method should
be called, Employee.getID() or Student.getID()?

The answer to the question depends on the static typ-
ing of the instance referred by the variable p. Suppose the
processIdOfEmployee method is declared as follows:

void processIdOfEmployee(Id::Employee e) {

String id = e.getID();

...

}

McJava allows a composition Id::Student::Employee to
be a subtype of Id::Employee, which means, in McJava,
subtype relations are not restricted to the immediate inher-
itance relations. In Id::Employee, Id immediately inherits
definitions from Employee. In Id::Student::Employee, Id
transitively inherits definitions from Employee. The compo-
sition Id::Employee has the same members with Id::Student

::Employee, so the latter is conceptually a subtype of the
former. Therefore, the instance of latter can safely be type-
casted to the former. This subtyping is a generalization
of inheritance-based subtyping that promotes reusability of
programs.

In the above case, local variable e has type Id::Employee;
therefore, the executed code of super.getID() in Id.getID()

should be Employee.getID().
On the other hand, the definition of processIdOfStudent

is:

void processIdOfStudent(Id::Student e) {

String id = s.getID();

...

}

In this case, local variable s has static type Id::Student;
therefore, the executed code of super.getID() in Id.getID()

should be Student.getID(). Therefore, in this case we
should have multiple method combinations: [Id.getID(),
Employee.getID()] and [Id.getID(), Student.getID()].

3. SOLVING THE PROBLEM BY USING SE-
LECTIVE METHOD COMBINATION

To tackle the problem, we propose a new method lookup
scheme that allows selective method combination i.e. when
we have multiple candidates for method call to super, we
can select which method to execute by using the static type
information. To explain our approach, we assume that mix-
ins A, B, C, D and a class E have a method void m(). Mixins
B and D also require a method void m() and call super.m()
inside the definition of B.m() and D.m(), which means they
intentionally override a method void m(). Finally, an in-
stance of a composition A::B::C::D::E is created and stored
into a local variable o whose static type is B::D (Figure 2):

B::D o = new A::B::C::D::E();

o.m();

In this case, A.m() and C.m() accidentally override the
superclass method, and B.m() and D.m() intentionally over-
ride the superclass method. Because the method o.m() is
invoked with the static scope B::D, the method that B.m()

overrides should be D.m(). Since C.m() accidentally over-
rides D.m(), the executed method should be B.m() and D.m()

(followed by E.m()).

m()

m()

m()

m()

m()

A

B

C

D

E

requires m()

requires m()

run-time chain static chain

Figure 2: New method lookup in McJava

We sketch the method lookup algorithm as follows:

1. In our approach, the method lookup (e.g. o.m()) starts
with the bottom of static inheritance chain (that is B in
Figure 2. We mean a static inheritance chain by a stat-
ically known inheritance relationship to distinguish it
with the run-time inheritance chain. The static inher-
itance chain is denoted with dashed lines in Figure 2),
then searches down the run-time inheritance chain.

2. In each mixin definition in the run-time inheritance
chain, the method lookup searches a method with the
same name and the same formal parameter types as
the invoked method.

In Figure 2, it finds that A has a definition of void

m().

3. If the found method intentionally overrides the super-
class’s method i.e. a method with the same name and
the same formal parameter types is declared in the
requires clause, the search goes down further to fol-
low the longest possible chain of intentional overrid-
ing. If the method is not declared in the requires

clause, this is an accidental overriding so the down
search stops and the last matched method encountered
before reaching the mixin that hides the method is ex-
ecuted.

In Figure 2, A does not require a method void m();
therefore, the resolved method is B.m().

4. The method lookup then searches the superclass’s method
called on super. This search goes up on the run-time
inheritance chain until it reaches the starting point (B
in Figure 2). After reaching the starting point, the
search then goes up the next mixin of static inheri-
tance chain, and searches down the run-time inheri-
tance chain again.

In Figure 2, super.m() is called during the execution
of B.m(). The method lookup then searches down the
run-time inheritance chain from mixin D.

5. The method lookup iterates the searching process 1
through 4 until no combined methods are left.

In Figure 2, the method lookup finds that C has a
definition of void m(); however, C does not import a
method void m(). Therefore, the method call super.m()
in B.m() results in the execution of D.m(). During the
execution of D.m(), super.m() is called, which results
in the execution of E.m().

So far, the executed methods in Figure 2 are B.m(), D.m()
and E.m(). In other words, the method combination from
A.m(), B.m(), C.m(), D.m() and E.m() with a static scope
B::D is [B.m(), D.m(), E.m()].

Note that if the pure-Java semantics of method lookup is
applied, the executed method is A.m().

4. IMPLEMENTATION
We have implemented the mechanism explained above

into the McJava compiler that compiles McJava source pro-
grams into Java source programs. Java virtual machine does
not preserve static type information of run-time objects.
To preserve static type information in translated Java pro-
grams, the compiler changes the name of methods declared
in mixins and corresponding method invocations.

McJava compilation strategy is explained by Kamina and
Tamai in [8]. In this paper, we briefly sketch how the renam-
ing of methods works in the compilation. Figure 3 shows the
translated Java code from the definitions in Figure 1 and Id

in section 2:

1. All the method names newly introduced in a mixin are
prefixed by the name of that mixin and a character
$. For example, the getID() method in the mixin
Employee becomes Employee$getID(). This renaming
avoids accidental overriding.

2. The treatment of methods that intentionally override
superclass’s methods is more sophisticated. Firstly,
not as in the case of accidental overriding, the com-
piler does not change the name of the method, but
changes the method name of super call to the name of
the overridden method in the translated class hierarchy.
For example, the super call inside getID() method
in mixin Id becomes Student$getID() in the trans-
lated class (Id Person). If there exist multiple method

class Person {

String _name;

String name() { return _name; }

}

interface Employee {

String name();

String Employee$getID();

}

class Employee_Person extends Person

implements Employee {

String id, title;

String name() { return title+super.name(); }

String Employee$getID() { return id; }

}

interface Student {

String Student$getID();

}

class Student_Person extends Employee_Person

implements Student {

String id;

String Student$getID() { return id; }

}

interface Id {

String getID(); ...;

}

class Id_Person extends Student_Person

implements Id {

String Student$getID() {

return super.Student$getID(); }

String Employee$getID() {

return super.Employee$getID(); }

String getID() {

return super.Student$getID(); }

...

}

interface Id_Employee extends Employee,Id { }

class Id_Student_Employee_Person

extends Id_Person

implements Id_Employee {

}

Figure 3: Compiled code of Figure 1 and Id

combinations, the compiler also inserts new methods
whose names are the same as those of overridden meth-
ods, copying body of the overriding method. For ex-
ample, the method declaration getID() in Id is also
copied into the method declarations Student$getID()
and Employee$getID() in the translated class. Note
that the name of the method in method invocation on
super is also changed appropriately.

The method name in corresponding method invocation is
also changed. For example, the declaration of processIdOf-
Employee in section 2 becomes the following declaration:

void processIdOfEmployee(Id_Employee e) {

String id = e.Employee$getID();

...

}

5. RELATED WORK

As mentioned earlier, our approach is an extension of hy-
gienic mixins [1, 12]. The implementation of hygienic mix-
ins is based on MixedJava, formalized by Flatt et al. [5].
MixedJava uses run-time context information, called view,
to determine which method should be invoked when an acci-
dental overriding exists. The subtyping rules of these work
do not allow an immediate superclass of a mixin in run-time
inheritance chain to be different from the statically known
superclass. The selective call of the “original” method to
super is not achieved in [1, 12, 5].

Ernst proposed the propagation mechanism of method com-
bination in the statically typed language gbeta [4], a gen-
eralization of the language BETA [11]. gbeta also provides
similar mechanism with our approach that allows two meth-
ods with the same signature to coexists in the same object,
and to select which one of them to call based on the statically
known type of the receiver. However, BETA/gbeta does not
provide Java-style method overriding; instead it provides
method argumentation by INNER statements. Therefore, the
result of selective method combination in gbeta is different
from our approach. Actually there is a design tradeoff; fur-
ther information about it is found in [3]. We also note that
recently Goldberg et al. propose a language that integrates
super and INNER [7].

Traits [14] resolve naming conflicts (i.e. accidental over-
riding) by aliasing of conflicting methods and making the
original method invisible from outside. This solution alle-
viates the problem only to small extent and requires other
than language features such as good refactoring tools, while
our approach solves the problem purely in language design
and implementation.

Epsilon [16, 15] is a role-based executable model that has a
feature of dynamic object adaptation. When an Epsilon ob-
ject dynamically adapt to a role, replacing of methods may
occur. This replacing allows more flexible method combina-
tion than the traditional method overriding where the name
of overridden method is always the same as that of overrid-
ing method. Even though McJava does not allow this re-
placing, we consider the mechanism proposed in this paper
provides a good basis for incorporating similar mechanism
into Epsilon.

6. CONCLUDING REMARKS
In this paper, we have proposed a new method lookup

scheme of selective method combination. This approach
solves the problem of accidental overriding in mixin-based
composition. With the flexible subtyping mechanism de-
fined in McJava, in the case of having multiple candidates
for method call to super we can select which method to be
called. This approach promotes flexibility of mixin-based
compositions, and reliability of programs because our ap-
proach makes it easier to ensure the behavior of classes. Our
approach can be implemented as the source code translation
into Java programs thus making it runnable on a standard
Java virtual machine.

Acknowledgements: The research has been conducted
under Kumiki Project, supported as a Grant-in-Aid for Sci-
entific Research (13224087) by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan.

7. REFERENCES

[1] Eric Allen, Jonathan Bannet, and Robert Cartwright.
A first-class approach to genericity. In Proceedings of
OOPSLA2003, pages 96–114, 2003.

[2] Davide Ancona, Giovanni Lagorio, and Elena Zucca.
Jam – designing a Java extension with mixins. ACM
TOPLAS, 25(5):641–712, 2003.

[3] Gilad Bracha and William Cook. Mixin-based
inheritance. In OOPSLA 1990, pages 303–311, 1990.

[4] Erik Ernst. Propagating class and method
combination. In ECOOP’99, volume 1628 of LNCS,
pages 67–91. Springer-Verlag, 1999.

[5] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. In POPL 98, pages
171–183, 1998.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[7] David S. Goldberg, Robert Bruce Findler, and
Matthew Flatt. Super and inner – together at last! In
OOPSLA 2004, pages 116–129, 2004.

[8] Tetsuo Kamina and Tetsuo Tamai. McJava – a design
and implementation of Java with mixin-types. In
Programming Languages and Systems: Second Asian
Symposium, APLAS 2004, Taipei, Taiwan, November
4-6, 2004, volume 3302 of LNCS, pages 398–414.
Springer-Verlag, 2004.

[9] Sonya E. Keene. Object-Oriented Programming in
Common Lisp. Addison-Wesley, 1989.

[10] Barbara H. Liskov and Jeannette M. Wing. A
behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems (TOPLAS),
16(6):1811–1841, 1994.

[11] Ole Lehrmann Madsen, Birger Møller-Pedersen, and
Kristen Nygaard. Object-Oriented Programming in the
BETA Programming Language. Addison-Wesley, 1993.

[12] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh.
Jiazzi: New-age components for old-fashioned Java. In
Proceedings of OOPSLA2001, pages 211–222, 2001.

[13] D. A. Moon. Object-oriented programming with
flavors. In OOPSLA’86 Conference Proceedings:
Object-Oriented Programming: Systems, Languages,
and Applications, pages 1–8, 1986.

[14] Nathanael Schärli, Steṕhane Ducasse, Oscar
Nierstrasz, and Andrew Black. Traits: Composable
units of behavior. In ECOOP 2003, LNCS 2743, pages
248–274, 2003.

[15] Tetsuo Tamai. Evolvable Programming based on
Collaboration-Field and Role Model. In International
Workshop on Principles of Software Evolution
(IWPSE’02), pages 1–5, 2002.

[16] Naoyasu Ubayashi and Tetsuo Tamai. Separation of
Concerns in Mobile Agent Applications. In Metalevel
Architectures and Separation of Crosscutting Conserns
– Proceedings of the 3rd International Conference
(Reflection 2001), volume 2192 of LNCS, pages
89–109. Springer-Verlag, 2001.

