
Embedding Legacy Keyword Search into Queries
for the Ubiquitous ID Database

Tetsuo Kamina, Noboru Koshizuka, and Ken Sakamura

The University of Tokyo,
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

{kamina,koshizuka,ken}@sakamura-lab.org

Abstract. Ubiquitous ID is a general purpose framework for implement-
ing context-aware ubiquitous computing applications, where identifiers
(called ucode numbers) and their relations are maintained in a large scale
distributed database called UCRDB. Since we have to maintain a huge
amount of data in UCRDB, it is sometimes desirable to delegate some
subqueries to the “legacy” text-base search engines. In this paper, we pro-
pose a new query language construct for UCRDB (but can be applied to
any other similar technologies such as RDF databases) that enables such
a dynamic linking. Using this approach, context of the real world and
legacy contents exist in the digital space can be seamlessly combined,
and we can view UCRDB and legacy search engines as a single hybrid
database so that no programming to “hard-wire” existing services is re-
quired. Furthermore, in our system, configurations of dynamic linking
are described as a rule base stored in UCRDB itself, thus the resulting
system is very simple but highly flexible and extensible.

1 Introduction

In a ubiquitous computing environment, it is important to enable computing
devices to identify objects and places in the real world; one of the promising
ways to satisfy this requirement is to assign an identifier to each object and place
that we want to identify, and store this identifier into some digital formats (such
as RFID, barcode, and so on) that computing devices can read. Furthermore, to
realize the property of context awareness[2], we can define the relations among
objects and places that describe the context of the real world by relating each
identifier.

Ubiquitous ID[1] is a general purpose framework for implementing such context-
aware ubiquitous computing applications. In this framework, each object and
place is identified by a ucode number, a unique identifier that is actually a 128-
bit length integer carrying no semantic information and thus it can be assigned
to everything. Even logical entities such as relations of ucode numbers may be
identified by ucode numbers. All the ucode numbers and their relations are stored
in a large scale distributed database called UCRDB (UCode Relation database).
These relations form a very large directed graph like RDF[15], where each node
is a ucode number or a string literal (that is an attribute of the ucode number),

and each edge is a relation between a ucode number and another ucode number
or a string literal. Queries to UCRDB is performed by adapting the technology
of graph pattern matching. A query graph pattern is constructed by a mobile
terminal acquiring ucode numbers from its surrounding environment and com-
bining them with some contextual information (such as access histories); this
pattern is then sent to the UCRDB and all the matched results are returned.

To implement many information services based on UCRDB, we have to
prepare a huge amount of digital contents, which can easily be a very time-
consuming task. On the other hand, there already exists a huge amount of infor-
mation in World Wide Web, and its amount is explosively increasing. Therefore,
to effectively reuse these contents, it is sometimes desirable to link UCRDB with
services provided by the “legacy” text-base search engines (regardless to say that
they serve documents on the Internet or a local document repository).

In this paper, we propose a new query language construct that enables such
a dynamic linking. Even though this proposal is based on UCRDB, our approach
can be applied to any similar database technologies such as RDF databases. Ac-
tually, our query language is implemented as a simple extension of SPARQL[16],
a standard query language for RDF and thus details of the underlying implemen-
tation of database systems are out of scope of this paper. However, to clarify our
motivations, in the rest of this paper we argue our approach based on UCRDB.

The proposed query language has a new feature of interfacing and querying
external text-base search engines on behalf of the query execution of UCRDB.
In general, the scope of a query language is closed inside its targeting database
system, and its only way to communicate with external systems is using stan-
dard interfaces such as JDBC and ODBC, through which execution of query is
passively invoked from general purpose host languages such as Java and C++.
Since many query languages do not provide interfaces where they can actively
communicate with the external systems, the aforementioned dynamic linking
have had to be implemented in the level of host languages. Our approach is
useful in that this dynamic linking is performed in the level of query languages.

In our approach, not only a linking between UCRDB and legacy contents but
also which external search engines to be accessed is determined at run-time. To
implement this feature, we use UCRDB itself as a key technology; using UCRDB,
we define which external engines to be accessed and how to communicate with
these engines as a rule base. Our query system understands this rule base and
automatically delegates search request to the appropriate external engines. Thus,
in our approach a query is very concise and simple but its behavior is flexibly
configurable and extensible.

So far, our contributions can be summarized as follows:

– In our approach, context of the real world and legacy contents exist in the
digital space are seamlessly combined so that application developers can eas-
ily make use of legacy contents in new context-aware ubiquitous information
services.

– A simple query language enabling aforementioned dynamic linking is imple-
mented as a simple extension of SPARQL.

– By using this query language, we can view UCRDB and legacy search engines
as a single hybrid database and thus no programming at the level of host
programing language is required.

– The resulting system is very simple but highly flexible and extensible.

2 Motivating Applications

2.1 Ubiquitous ID Framework

In this section, we introduce the core technologies of ubiquitous ID as a back-
ground. Ubiquitous ID is a general purpose framework that is designed to imple-
ment context-aware ubiquitous computing applications. To realize the property
of context-awareness, in this framework every object, place, and even concept
that we want to identify is assigned a unique identifier called a ucode number.
A ucode number can be stored in many kinds of tags such as passive RFID
tags, active RFID tags, infrared markers, barcodes, 2-D codes, and so on. How
to embed ucode numbers to these tags and access protocols to these tags are
standardized so that many kinds of computing devices can read ucode numbers
attached to the real world.

The context of the real world is described by relating each ucode number.
Each relation is also identified by using a ucode number, thus this relation is
described as a triple of a subject ucode number, a relation ucode number (i.e.
predicate), and an object ucode number, which is exactly the same format of
RDF[15] triples except that each element of a triple is not an URI but a ucode
number1. Actually, each ucode number can be represented as an URI by using a
namespace; furthermore, in UCRDB we may assign an alias name (in the form
of URI) for each ucode number. Therefore, we can query over UCRDB by using
SPARQL, a standard query language for RDF databases2.

2.2 Applications

Ubiquitous ID is a general purpose framework in that each ucode number does
not carry any semantic information, and UCRDB is semi-structured so that we
can freely define application specific schemata. Since we have to maintain a huge
amount of data in UCRDB, when we implement an information service using
UCRDB it is sometimes desirable to delegate some subqueries to the legacy text-
base search engines. In the following subsections, we describe such scenarios.

1 As in RDF, the object part of a triple may also be a string literal. Note that this
string literal may be a URI string. For example, we may relate a ucode number with
a URL that stores further information of the ucode number

2 In our implementation, each alias name is reduced to the corresponding ucode num-
ber in the preprocessing phase of SPARQL.

Site-specific information systems. By using ucode numbers, we can identify
places or sites. Furthermore, by adapting this identification technique, we can
also define the relations among places such as “that is the 4th building past the
intersection,” “these two intersections are connected,” and so on. By maintaining
these relations in UCRDB, we can construct a pedestrian navigation system[4];
in this system, an active RFID tag announces the ucode number of a place, and
the mobile terminal reads the ucode number and queries the route information to
the UCRDB. This mechanism enables more fine-grained pedestrian navigations
than that are built using GPS technologies. Another advantage of this approach
is we can provide a pedestrian navigation for interior regions such as museums
and shopping malls, where GPS technologies cannot be applied.

In a pedestrian navigation system, it is also convenient to link the navigation
system with other information services; for example, some users may want to
be notified the nearest shop information or sightseeing information from where
they are. Since creating such contents from scratch is a very time-consuming
task, such information should be retrieved from the Web search engines using
the name of the place (and other auxiliary information) as keywords. Therefore,
some linking mechanism between UCRDB and Web search engines will be useful.

Equipment management. Preserving digital archives of records of the equip-
ments in the real world is a persistent requirement. By applying the Ubiquitous
ID framework, we can also construct such an equipment management system. In
this system, an RFID tag containing a ucode number is attached to each equip-
ment, and we can get the records of equipments on site using a mobile terminal
that reads the RFID tags and queries the database storing the information.

Such equipment management database can be constructed by relating each
ucode number to their information. However, there are huge amount of records
of equipments, thus constructing a database of such records is a very time-
consuming task. On the other hand, to construct a digital archive, we may also
use a full-text search engine. In this case, we do not have to construct a database;
we just index each document stored in the file system so that each document
is searched using keywords. To make use of such a full-text search engine from
UCRDB, we have to implement some communication mechanisms between them.

3 Design and Implementation

In the aforementioned applications, we conceptually view the UCRDB and text-
base search engines serving World Wide Web or file systems as a single hybrid
database. We introduce a new feature of interfacing and querying external en-
gines on behalf of the query execution into the SPARQL query language. In this
extension, we impose the following requirements:

Extensibility: There are many kinds of text-base search engines. The number
of search engines is still growing, and each search engine may evolve so that
its interface changes. Thus, our extension should be able to incorporate with
new kinds of external engines.

@prefix ex:

ex:pointA ex:latitude "..." .

ex:pointA ex:longitude "..." .

ex:linkAB ex:node ex:pointA .

ex:linkAB ex:node ex:pointB .

ex:linkAB ex:length "34.5" .

ex:pointA ex:nearestShop ex:abcDepartmentStore .

ex:pointA ex:nearestShop ex:xyzMusic .

ex:abcDepartmentStore ex:name "ABC Department Store" .

ex:xyzMusic ex:name "XYZ Music" .

Fig. 1. A simple RDF data for pedestrian navigation system

Lightweight language: SPARQL is a very simple query language and thus
adding unnecessary complexity is undesirable. Therefore, the new language
constructs that are added to SPARQL should be very simple.

To achieve these requirements, our new extension of SPARQL has the fol-
lowing features:

Defining the mapping to external engines in UCRDB: In our extension,
how queries are executed on each external engine is user-definable using
UCRDB. To implement this feature, we store attributes of external engines
those are written as UCRDB relations mapping each external server’s ucode
number to their attribute values. Each of these relations is assigned a ucode
number and also given an alias name in the form of URI for human read-
ability.

Developing the interpreter: We introduce a new pattern SEARCH EXTERNAL
into SPARQL. A SEARCH EXTERNAL pattern interprets the relations mapping
each external server to its attribute values and sends a query to the appro-
priate external engine. This pattern may contain variables appear in other
triple patterns.

In the following sections, we assume that every ucode number appears in our
example is assigned an alias name. Thus, in the following examples every triple
of UCRDB appears in the form of an RDF triple. For simplicity, we also use a
convention to write a URI by using a namespace prefix such as ex:.

An example. To explain the feature of our proposal, we use a simple exam-
ple that describes UCRDB data of a pedestrian navigation system. Fig.1 shows
a piece of the UCRDB database in the form of N3[3]. The values ex:pointA
and ex:pointB are points in the pedestrian network that we want to identify
to represent routes (e.g. intersections); these points are connected by the link
ex:linkAB whose length is 34.5m. Besides the route for the goal, this pedestrian
navigation system also shows some useful information around the point, if nec-
essary. For example, the descriptions in Fig.1 show that ex:pointA is close to a
department store and a music shop.

Consider that a pedestrian reads a ucode of ex:pointA using a mobile ter-
minal. The following query acquires the name of shops close to the variable
?this (whose value is implicitly given as ex:pointA) and sends a request to the
external search engine by using the acquired shop name as a keyword:

SELECT ?y ?ext WHERE {
?this ex:nearestShop ?x .
?x ex:name ?y .
SEARCH EXTERNAL ?ext { ?y -> extern:myServer } } (1)

The SEARCH EXTERNAL pattern is the new syntax we add to SPARQL. This
pattern may appear in any places where a SPARQL pattern (such as a triple, a
FILTER pattern, and so on) may appear, but inside the block of this pattern has a
special syntax; we may not write any SPARQL patterns there. Instead, we put a
search request descriptor (just a variable ?y in the above example) and a search
engine descriptor (a resource extern:myServer in the above example), which
means that the search request ?y is sent to the resource extern:myServer. The
response of this request (a list of pair of found resource’s URL and title) is stored
in the variable ?ext3. As in the original SPARQL, the result of this query is a
list of tuples whose columns are indexed as ?y and ?ext, respectively. A request
is sent to extern:myServer for each matched value with ?y4.

We can use multiple variables in a search request descriptor by combining
them by logical operators such as && (and) and || (or). We can also restrict
the search results by specifying filters such as the content’s language (written
lang="jp", for example), maximal counts of the results (written max=10, for ex-
ample), and so on. Note that filters can only be combined using the && operator.

Behavior mapping in UCRDB. In the above example, how the query key-
words are sent to the external engine is not specified. In our system, this mapping
is not hard-wired, to support a dozen of external engines and to incorporate with
a new kind of external engines that is not taken into account at the first time of
development. For this purpose, we introduce a new UCRDB vocabulary (i.e., a
set of ucode numbers assigned to relations specifying attributes of external en-
gines). This vocabulary is used to map a resource identifying an external engine
(extern:myServer in the above example) to its attributes such as its base URL,
a HTTP request parameter name that captures query keywords, and so on.

For example, a specification of the external engine extern:myServer can
be written as shown in Fig. 2. It shows that the base URL of the location
of extern:myServer is http://search.yahoo.co.jp/search, and the HTTP
request parameter name used for queries to this search engine is p. Thus, the
query (1) results in the following sequence of HTTP requests, when the variable
?this matches ex:pointA:
3 Note that the variable ?ext does not match any of subject, predicate, and object of

triples, since it does not have a type of URI or string literal.
4 However, we may restrict the total number of requests to the same external engine

in one query, whose default value is 100.

extern:myServer exvocab:url "http://search.yahoo.ac.jp/search" .

extern:myServer exvocab:query_param "p" .

... (other specifications for HTTP request parameters)

Fig. 2. A specification of an external engine written in RDF

Fig. 3. Data flow of our query processor

http://search.yahoo.co.jp/search?p=%22ABC+Department+Store%22
http://search.yahoo.co.jp/search?p=%22XYZ+Music%22

We can also specify other external engines in the similar way. Furthermore,
we can change the specification of extern:myServer to make use of the other
external engine without modifying the query. Our query engine understands the
UCRDB vocabularies and delegates queries for the appropriate external engine.

Note that the format of results from each external engine (in general written
in HTML) also differs from other external engines. This means that how to ex-
tract the list of pairs of found document’s URL and title from the results of each
external engine is also differs from that of other external engines. Therefore, we
also have to specify the rules for such extraction using UCRDB vocabularies. For
example, which anchor tag contains URL of the query result can be determined
by observing its class attributes’ value, its enclosing tag and attributes, depth
from the root html tag, and so on.

Implementation. A data flow of our query processor is shown in Fig.3. Firstly,
the extended query processor parses the query and constructs a SPARQL state-
ment from which SEARCH EXTERNAL patterns are removed. Then, it passes this
statement to the original SPARQL processor. The SPARQL processor executes
the SPARQL statement and returns the results to the extended query proces-
sor. By inspecting the results, the extended query processor then assigns values

String query = ...; /* SPARQL statement shown in section 3.1 */

DatabaseResult rs = ucode.execSparqlQuery(query);

while (rs.hasNext()) {

ExternalResultList lst = (ExternalResultList)rs.get("?ext");

while (lst.hasNext()) {

ExternalResult ext = lst.next();

String url = ext.getURL();

String title = ext.getTitle(); ... } }

Fig. 4. An example code using our API

to the variables appear in SEARCH EXTERNAL patterns to construct a query for
each external engine. This process iterates over all the combinations of variable
assignments. The external engine proxy constructs HTTP request parameters
for the external engine whose location is acquired by inspecting the UCRDB,
and sends them to the external engine. The response from the external engine is
also inspected by looking up the UCRDB rule base to extract the search results
(i.e. found document’s URLs and titles). Finally, the extended query processor
merges the results from the original SPARQL processor and external engines,
and returns them to the client.

Our current implementation is based on Java API for UCRDB. This API is
object-oriented, in that every query is executed via message passing. A receiver
of messages is a ucode object; besides simple lookup methods such as “get-
ting all the triples whose subject is the receiver ucode,” a SPARQL execution
method is also implemented as a member of Ucode class. The method signature
of execSparqlQuery is as follows:

DatabaseResult Ucode.execSparqlQuery(String query);

The formal parameter query is an (extended) SPARQL statement. This state-
ment may include a special reserved variable ?this, which refers to the ucode
number of its receiver.

A result of SPARQL statement is a list of tuples, whose columns are indexed
by the names of variables. The class DatabaseResult encapsulates the internal
structure of tuples and provides access methods. In general, a value of each
column has a type of ucode or string literal (or blank node), but some values
have a type of “lists of pairs of found document’s URL and title.” Consider the
code shown in Fig.4. In this code, the SPARQL statement (1) is executed, and
its result is assigned to the variable rs. For each row of rs, we get a value of
column indexed as ?ext. Since this value is a result of SEARCH EXTERNAL, it
contains a list of found document’s URL and title. The types of ?ext and its
elements are represented as classes ExternalResultList and ExternalResult,
respectively.

So far, the aforementioned requirements are met; owing to UCRDB’s abil-
ity of self-description, we may set each parameter describing external engines
in UCRDB itself, thus the resulting system is highly flexible and extensible.

The only language construct we add to SPARQL is SEARCH EXTERNAL pattern,
whose semantics is also straightforward. The only burden we add to the under-
lying SPARQL implementations is the process time of external engine proxy,
which includes response time of HTTP request that likely be a bottleneck. This
response time varies depending on the external engines and network conditions,
but in most of the cases it should be acceptable.

4 Related Work

Extensive research efforts have been made for exploiting how to combine classical
search techniques with semantic model described as metadata or ontology[11, 7,
12, 6]. For example, Rocha et al.[11] show an approach of using semantic model
of a given domain to calculate weights of links that measure the strength of
the relation. Spread activation techniques are used to find related concepts in
the ontology given an initial set of concepts and corresponding initial activation
values, which are obtained from the results of classical search. In general, these
approaches are useful when there is rich metadata associated with web pages.

Our approach, on the other hand, aims to combine classical search techniques
with semantic search, regardless to say that there are metadata associated with
web pages or not. In this sense, our approach is more similar with business
process execution languages such as BPEL4WS[5], which is a result of merging
previously developed WSFL[9] and XLANG[13]. In these approaches, however,
the description of service partners is done via WSDL portType definitions[14],
which prevents solely matching of WSDL messaging interfaces5. Furthermore,
semantically the same services cannot be combined unless the import and export
interfaces are exactly matched. Therefore, these approaches do not provide a
flexible mechanism to combine each service as presented in our approach.

Mandell and McIlraith [10] propose a bottom-up approach to integrate Se-
mantic Web technologies into Web services. Based on BPEL4WS, they present
integrated Semantic Web technology for automating customized, dynamic bind-
ing of Web services together with interoperation through semantic translation.
Our approach, on the other hand, is based on SPARQL and provides much closer
looking at database queries. In our approach, combination of UCRDB and legacy
search engines is performed in a declarative way.

5 Concluding Remarks

This paper presents a new query language construct that enables dynamic linking
of UCRDB and legacy text-base search engines. This feature is designed and
implemented at the top of UCRDB, but the same approach may be applicable
to any other similar technologies such as RDF databases. Using this approach,
context of the real world and legacy contents exist in the digital space can be
5 Kamina and Tamai [8] propose a method of structural matching of WSDL messaging

interfaces.

seamlessly combined, and we can view UCRDB and legacy search engines as a
single hybrid database so that no programming to hard-wire existing services
are required. Furthermore, in our system, configurations of dynamic linking are
described as a rule base stored in UCRDB itself, thus the resulting system is
very simple but highly flexible and extensible.

References

1. Ubiquitous ID Center. http://www.uidcenter.org/.
2. Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and

Pete Steggles. Towards a better understanding of context and context-awareness.
In Proceedings of the 1st International Symposium on Handheld and Ubiquitous
Computing, volume 1707 of LNCS, pages 304–307, 1999.

3. Tim Berners-Lee. Notation 3. http://www.w3.org/DesignIssues/Notation3.html,
1998.

4. Masahiro Bessho, Shinsuke Kobayashi, Noboru Koshizuka, and Ken Sakamura.
A space-identifying ubiquitous infrastructure and its application for tour-guiding
service. In SAC 2008, pages 1616–1622, 2008.

5. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and
S. Weerawarana. Business process execution language for web services.
http://www.ibm.com/developerworks/library/ws-bpel/.

6. John Davies and Richard Weeks. QuizRDF: Search technology for the Seman-
tic Web. In Proceedings of the 37th Hawaii International Conference on System
Sciences, page 40112, 2004.

7. Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R.S̃cott Cost, Yun Peng, Pavan
Reddivari, Vishal Doshi, and Joel Sachs. Swoogle: A search and metadata engine
for the Semantic Web. In CIKM’04, pages 652–659, 2004.

8. Tetsuo Kamina and Tetsuo Tamai. Loosely Connected RPC: An approach for ex-
tendable interface of Web Services. In Proceedings of the 1st International Work-
shop on Web Services: Modeling, Architecture and Infrastructure (WSMAI-2003),
pages 62–73, 2003.

9. F. Leymann. Web services flow language. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

10. Daniel J. Mandell and Sheila A. Mcllaith. Adapting BPEL4WS for the Semantic
Web: The bottom-up approach to web service interoperation. In The Semantic
Web – ISWC 2003, volume 2870 of LNCS, pages 227–241, 2003.

11. Cristiano Rocha, Daniel Schwabe, and Marcus Poggi de Aragao. A hybrid approach
for searching in the semantic web. In WWW 2004, pages 374–383, 2004.

12. Ljiljana Stojanovic, Nenad Stojanovic, and Raphael Volz. Migrating data-intensive
Web Sites into the Semantic Web. In ACM SAC’02, pages 1100–1107, 2002.

13. S. Thatte. XLANG: Web services for business process design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.html.

14. W3C. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

15. W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, 2004.

16. W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/2008/REC-
rdf-sparql-query-20080115/, 2008.

