
A Core Calculus of Composite Layers

Tetsuo Kamina
University of Tokyo
kamina@acm.org

Tomoyuki Aotani
Japan Advanced Institute of

Science and Technology
aotani@jaist.ac.jp

Hidehiko Masuhara
University of Tokyo
masuhara@acm.org

Abstract
Composite layers in context-oriented programming (COP) are the
abstraction that localizes conditions about when the specified layer
becomes active. A composite layer changes the behavior of the
system by implicit layer activation triggered by explicit activation
of contexts. Existing studies on formalization of COP languages
do not cover such an activation mechanism. This paper formal-
izes composite layers to clarify the operational semantics of im-
plicit layer activation. Based on this formalization, we prove that
the translation of composite layers into the existing COP language
is sound, which ensures the correctness of the existing implemen-
tation of composite layers.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages

Keywords Context-oriented programming; EventCJ; Implicit layer
activation

1. Introduction
Composite layers [10, 11] in context-oriented programming (COP)
[7] are the abstraction that consolidates context-dependent behav-
ior executable only under some condition specified in terms of con-
texts. This mechanism localizes such a condition about when the
layer becomes active, which simplifies the program that would be
complicated without using this mechanism in particular when the
correspondence between contexts and variations of behavior is not
simple.

Composite layers change the behavior of the system by implicit
layer activation, which is triggered by the explicit activation of con-
texts. On the other hand, existing formalizations for COP languages
only provide explicit layer activation in their operational semantics
[8, 1]. This limitation makes it hard to investigate some important
properties on composite layers. For example, in the previous paper
[11], we proposed translation of composite layers into the existing
COP language, namely EventCJ [9], because the implicit layer acti-
vation mechanism would require additional computation overhead.
The lack of formal studies on composite layers makes it difficult to
prove the soundness of this translation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’13, March 26, 2013, Fukuoka, Japan.
Copyright c© 2013 ACM 978-1-4503-1865-5/13/03. . . $5.00

Figure 1. Context changes in the Twitter client. The black circles
indicate “initial contexts” in which the system resides when it is
initialized

To clarify the operational semantics of composite layers, in
this paper, we propose a formalization of composite layers, called
FECJ◦, as an extension of Featherweight EventCJ (FECJ), a small
calculus that models EventCJ’s layer transition mechanism [1]. To
model the implicit layer activation, we extend FECJ to include
the activate declaration table (AT), which maps each composite
layer to a condition about when the layer is active. We also modify
the reduction rules to encode the activation of composite layers
into the calculus. Although this extension is simple, it clarifies
two significant facts with respect to the application order of layer
activation. First, explicit activation of layers and implicit activation
of composite layers are not applied simultaneously. Second, unlike
FECJ, in FECJ◦, the order of the resulting active layers cannot be
determined by the semantics.

Based on this formalization, we obtained the following techni-
cal results:

• We prove that the composite layer mechanism does not go
wrong; i.e., layers that do not satisfy the condition for activation
never become active.

• We prove that the compilation of composite layers described in
[11] is sound. The compilation translates activation of compos-
ite layers into layer transition rules in EventCJ. We formalize
this compilation as a translation from FECJ◦ into FECJ, and
prove that both are behaviorally equivalent.

This paper is organized as follows. Section 2 provides a limita-
tion of layer-based COP languages and introduces composite lay-
ers. Section 3 formally describes operational semantics of compos-
ite layers. Section 4 describes a formalization of the implementa-
tion. Section 5 discusses related work. Finally, Section 6 concludes
this paper.

2. Preliminaries
An Example In this section, we explain our motivation by con-
sidering a tabbed Twitter client. This Twitter client is equipped with
multiple tabs, each of which displays the user’s timeline; the time-
line is updated after a person followed by the user posts a tweet.
Only one tab is focused at a time. The focused tab frequently up-
dates the timeline, while the other unfocused tabs infrequently up-
date it. The user selects a tab by clicking on it.

Context changes are modeled by using a state transition model,
as shown in Figure 1. Besides an initial state, this model declares

Figure 2. Classes and layers in COP languages.

1 event TabIsFocused(ChangeEvent e)
2 :after execution(void TabListener.stateChanged(*))
3 :sendTo(e.getSrc().getSelected().controller());

5 transition TabIsFocused:
6 TabIsFocused ? TabIsUnfocused -> TabIsFocused
7 | -> TabIsFocused;

Figure 3. Examples of an event and a layer transition rule in
EventCJ

two states, namely TabIsFocused and TabIsUnfocused. The former
represents a context when the tab is focused, while the latter rep-
resents a context when the tab is unfocused. Behavior of the ap-
plication changes with respect to current contexts. When the tab
is focused, the timeline is frequently updated, and when the tab is
unfocused, it is infrequently updated.

Layer-based COP languages provide layer to modularize context-
dependent behaviors and a mechanism to dynamically switch lay-
ers. A layer is a modularization unit that groups behaviors exe-
cutable under the same contexts. Figure 2 illustrates classes and
layers in COP languages by using a class diagram, as proposed
by Lincke et al.[13]. In this diagram, a layer is represented as a
container stereotyped with <<Layer>>. Each layer declares par-
tial methods that change the original behavior when the layer is
active. These partial methods are grouped into a class stereotyped
with <<partial class>>. For example, when getSleepTime
is called, the partial method getSleepTime declared in the layer
TabIsFocused is executed when TabIsFocused is active.

In Layer-based COP languages, we explicitly specify layers
that are activated/deactivated at particular execution points. For
example, EventCJ [9] provides layer transition rules that specify
the layers to be activated (and deactivated) upon a specific event,
as shown in Figure 3. An event is declared with two specifica-
tions, one indicating when the event is generated and the other
indicating where the event is sent. The former is specified by us-
ing an AspectJ-like pointcut sublanguage [12], and the latter is
specified using the sendTo clause that lists instances where the
event is sent. For example, TabIsFocused is generated when
the focus of a tab is changed and sent to the focused tab. Upon
events, EventCJ executes layer transition rules for changing the
active layers of the object that receives the events. The layer
transition rule shown in Figure 3 is read as, “upon the gener-
ation of TabIsFocused, if TabIsUnfocused is active, then it
is deactivated and TabIsFocused is activated; otherwise, only
TabIsFocused is activated.”

Problem on Layer-based COP Languages Assume that the Twit-
ter client is extended to include the energy-saved mode, which is
a context when the executing machine is running out of battery. In
this context, any tab (including the focused one) updates the time-

Figure 4. Correspondence between contexts and behaviors

line infrequently to save resources, and an alert icon is displayed to
notify the user about the current status of the battery.

This extension implies that the behaviors implemented in layers
TabIsFocused and TabIsUnfocused no longer depend solely
on the contexts TabIsFocused and TabIsUnfocused, respectively.
Instead, they depend on combinations of contexts relating to a
tab’s focus and the machine’s battery. The correspondence between
contexts and behaviors is shown in Figure 4.

Since the condition corresponding to the layer being active is
changed, we need to modify the event shown in Figure 3 as follows:

event TabIsFocused(ChangeEvent e)
:after execution(void TabListener.stateChanged(*))
&&args(e)&&if(!Env.isBatteryLow())

:sendTo(e.getSrc().getSelected().controller());

In this extension, there is a tangling code problem; we need to
declare events that depend on several context changes and status,
because each context change in Figure 1 no longer directly corre-
sponds to a layer switching. For example, when the tab’s context
changes to TabIsFocused, the layer TabIsActive becomes active
only when the system is not in the context EnergySaved. Thus, in
EventCJ, we have to declare the event that activates TabIsActive
with the joinpoint that changes the tab’s focus and the if pointcut
that inspects the status of the battery. This event does not directly
reflect the model of context changes. Two context changes relating
to the tab’s focus and the status of the battery are tangled in the
same event. Thus, the resulting code makes it difficult to perform
further extension and modification.

Furthermore, there are some cases where we need to declare
several events for the same context change, since each context
change does not correspond to a unique event. For example, for
the context change from the EnergySaved to the initial state (i.e.,
the system is not in the energy-saved mode), we need to declare two
events: an event generated when the tab is in TabIsUnfocused and
that generated when the tab is in the initial state. This duplication
of events requires the layer transition rules for each event; this
requirement makes the program complicated and results in it being
poorly understood.

Composite Layers To tackle the aforementioned problem, we
proposed composite layers [10, 11]. A composite layer depends on
activation of other layers. It declares a proposition in which ground
terms are other layer names (true when active), and implicitly
becomes active only when the proposition holds. We call layers
that are not composite layers as atomic layers. Atomic layers are
explicitly activated by using layer transition rules.

For example, we can declare two composite layers correspond-
ing to two variations of behavior in Figure 4 as follows:

layer FrequentUpdate
when TabIsFocused && !EnergySaved {

/* frequent update of timeline */
}

layer InfrequentUpdate
when TabIsUnfocused || EnergySaved {

/* infrequent update of timeline */
}

Both composite layers FrequentUpdate and InfrequentUpdate
depend on activation of TabIsFocused, TabIsUnfocused, and
EnergySaved, which are controlled by the following layer acti-
vation rules:

transition TabIsFocused:
TabIsUnfocused ? TabIsUnfocused -> TabIsFocused

| -> TabIsFocused;

transition TabIsUnfocused:
TabIsFocused ? TabIsFocused -> TabIsUnfocused

| -> TabIsUnfocused;

transition BatteryLevelLow: -> EnergySaved;

transition ACConnected: EnergySaved ->;

Composite layers solve the tangling problem, because there is a
one-to-one correspondence between atomic layers and contexts so
that context changes are straightforwardly implemented by layer
transition rules. While designing and implementing events and
context transition rules about the status of the tab, we do not
have to consider the status of battery. Thus, the proposal enhances
separation of concerns.

3. Formalization
The introduction of the implicit layer activation mechanism re-
quires the modification of operational semantics of EventCJ. The
operational semantics of EventCJ was given as a small calculus
called Featherweight EventCJ (FECJ) [1], which is built on top of
ContextFJ [8]. This section shows FECJ◦, an extension of FECJ, to
reflect the implicit layer activation mechanism.

In short, we extend the syntax of FECJ to include the activate
declaration table (AT) that maps each composite layer to a condi-
tion about when the layer is active. We also modify the reduction
rules to incorporate the AT . Although this modification is simple,
it reveals two significant facts. First, layer transition rules and im-
plicit activation are not applied simultaneously. Instead, implicit
activation is applied just after all the applicable transition rules are
applied. Second, unlike FECJ, in FECJ◦ the order of the resulting
active layers after the application of transition rules and implicit
activation cannot be determined by the semantics. We clarify these
points by formally defining the operational semantics.

Note that this formalization only focuses on the operational
semantics. A formal study on the type system of FECJ◦ remains
as future work.

Syntax The abstract syntax of FECJ◦ is shown in Figure 5. Let
metavariables C, D, and E range over class names; L ranges over
layer names; f ranges over field names; m ranges over method
names; ` ranges over labels; c ranges over conditions; v and w range
over addresses in stores; and x and y range over variables, which
include a special variable this. Overlines denote sequences: e.g.,
f stands for a possibly empty sequence f1, · · · , fn. The empty
set is denoted by ∅. The empty sequence is denoted by • and
sometimes by ∅ if the order is not important. We use a set in a
context where a sequence is expected (e.g., comparing a set and
a sequence using =). In this case, we regard the set as a se-
quence obtained by serializing all elements in the set in an ar-
bitrary order. We also abbreviate a sequence of pairs by writing
“C f” for “C1 f1, · · · , Cn fn,” where n denotes the length of C

CL ::= class C / C { C f; K M } (classes)
K ::= (constructors)

C(C f){ super(f); this.f = f; }
M ::= C m(C x){ return e; } (methods)

e, d ::= x | eˆ̀
.f | eˆ̀

.m(e
ˆ̀
) (expressions)

| new C(e)
| proceed(e)
| v | v<C,L,L>.m(v)

t ::= L:L?L→L (transitions)
c ::= L | !L | c||c | c&&c (conditions)
p ::= v 7→ new C(v)<L> (partial stores)
µ ::= p (stores)

Figure 5. FECJ◦: abstract syntax

and f. Similarly, we write “C f;” as shorthand for the sequence of
declarations “C1 f1;. . .Cn fn;” and “this.f=f;” as shorthand
for “this.f1=f1;. . .;this.fn=fn;”. We use commas and semi-
colons for concatenations. It is assumed that sequences of field dec-
larations, parameter names, layer names, and method declarations
contain no duplicate names. We also use a hat to denote an optional
element, i.e., ˆ̀ denotes that there is a label ` or no labels. An empty
element is denoted by ε, which is usually omitted.

The only addition to the syntax from [1] that we make in this
paper is conditions, which correspond to conditions in composite
layers. A condition can be a layer name L, its negation !L, logical-
or c||c, and logical-and c&&c. Other details are exactly the same
as [1].

An FECJ◦ program (CT, PT, TT, AT, e) consists of a class table
CT that maps a class name to a class definition, a partial method
table PT that maps a triple C, L, and m of class, layer, and method
names to a method definition, a transition rule table TT that maps
a label to a sequence of transition rules, an activation table AT
that is a set of pairs of a layer and a condition, and a well-formed
expression e that corresponds to the body of the main method. We
assume CT , PT , TT , and AT to be fixed and to satisfy the following
sanity conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).

2. Object 6∈ dom(CT).

3. For every class name C (except Object) appearing anywhere in
CT , we have C ∈ dom(CT);

4. There are no cycles in the transitive closure of the extends
clauses.

5. PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈ dom(PT).

6. TT(`) = t for every label ` that appears in e, CT , and PT .

7. For every (L, c) ∈ AT , TT(`) = L1:L2?L3 → L4 does not
contain L, and ∀L′ ∈ c, L′ 6∈ dom(AT).

Operational Semantics The operational semantics of FECJ◦ is
given by a reduction relation of the form e|µ −→ e′|µ′, which is
read “expression e under the store µ reduces to e′ under µ′.” We
assume that µ and µ′ do not contain duplicate names.

We only show the rule that is different from FECJ, which is a
rule for the application of transition rules.

switchLayer(µ, v, `) = p

J[v`]|µ −→ J[v]|pµ
(R-LABEL)

µ(v) = new C(w)<...> transit(µ, v, `) = L
layer(L) = L′ L⊕ L′ = L′′

switchLayer(µ, v, `) = v 7→ new C(w)<L′′>
(TR-SWITCHLAYER)

µ(v) = new C(w)<L>
TT(`) = t {t ∈ t|app(t, L)} = t′

⊕{L3|L1:L2?L3→L4 ∈ t′} = L′

⊕{L4|L1:L2?L3→L4 ∈ t′} = L′′

L′′′ = (L \ L′ \ dom(AT))⊕ L′′

transit(µ, v, `) = L′′′

(TR-TRANSITION)
L1 ∩ L = L1 L2 ∩ L = •

app(L1:L2?L3→L4, L)
(PRED-APPLICABLE)

L′ = {L ∈ dom(AT)|L ` AT(L)}
layer(L) = L′

(TR-ACTIVE)

Figure 6. Transition rules

The form J[·] represents evaluation contexts for operations de-
fined as follows:

J ::= [].m(v) | v.m(w,[], w′) | [].f

Each context is an expression with a hole (written []) somewhere
inside it. We write J[v] for either field access or method invocation
obtained by replacing the hole in J with v, which reflects the fact
that each expression is well-formed. The function switchLayer,
which is explained later, applies the transition rules for the label ˆ̀

and updates the active layers for v by evaluating conditions stored
in AT .

Transitions The function switchLayer changes the set of active
layers on an object by applying transition rules (Figure 6). The
actual application of transition rules is performed by the function
transit that returns a sequence of active layers after the application
of transition rules. These active layers are subjected to the applica-
tion of the activate declarations in AT , by the function layer. Note
that layer uses the result of transit, i.e., layer is applicable only
after transit.

The definition of transit is also shown in Figure 6. We use set-
like notations to denote the operations on sequences; all the opera-
tions preserve the order of the sequences. {t ∈ t1,..,tn|pred(t)}
is the sequence t1

′,..,tk
′, where t1

′ and tk
′ are the first and

the last elements in t1,...,tn that satisfy the predicate pred ;
further, for all ti and tj in t1

′,..,tk
′ and i < j, there exist

ti′ and tj′ in t1,..,tn that satisfy ti = ti′ , tj = tj′ , and
i′ < j′. L \ L′ indicates the operation that removes all the ele-
ments in the sequence L′ from L without changing the order of L.
L ⊕ L′ concatenates the two sequences without any duplications,
i.e., (L1; ..; Li; ..; Ln) ⊕ (L1

′; ..; Li
′; Li; Li+2

′; ..; Lk
′) is the

sequence L1; ..; Li; ..; Ln; L1
′; ..; Li

′; Li+2
′; ..; Lk

′. We write
⊕{L, .., L′} as shorthand for L ⊕ .. ⊕ L′. L ∩ L′ denotes the set-
intersection between L′ and L that preserves the order of layers in
L and L.

The function transit takes a store µ, location v, and label `.
Unlike the original definition in [1], it returns a sequence of active
layers, which are the result of the application of transition rules for
`. The transitions are obtained by looking up the transition table
TT . The predicate app(L1:L2?L3→L4, L) means that the transition
t satisfies its precondition, i.e., all the layers in L1 are in L and none
of the layers in L2 is in L. Layers to be deactivated and activated are
determined from the transitions. In other words, all the transitions
on the same label are applied at the same time.

The function layer takes a sequence of layers L and evaluates
all the conditions in AT by assuming that all L are true. Then, it
returns a sequence of layers in the range of AT where the condition
is evaluated to be true. L ` AT(L) is read “the condition AT(L) is
true when every L ∈ L is active.” The evaluation of a condition c
is performed by interpreting !, ||, and && as negation, logical-or,
and logical-and of propositions, respectively. Unlike the definition
of transit, layer does not determine the order of the resulting layers,
i.e., the resulting sequence is obtained by serializing all elements in
{L ∈ dom(AT)|L ` AT(L)} in an arbitrary order.

Properties From the definitions described in this section, we can
prove the following simple theorem ensuring that “layers that do
not satisfy the condition for activation never become active.”

THEOREM 3.1. If e|∅ −→∗ e′|µ, v 7→ new C(v)<L> ∈ µ and
L ∈ dom(AT), then L ` AT(L) iff L ∈ L.

PROOF. See Appendix A.

4. Implementation
Our implementation strategy is to translate a program written in
the extended syntax into that written in the original syntax. Specifi-
cally, in the extended syntax, layer switching is represented in terms
of context changes. We need to translate them into layer transition
rules that directly activate and deactivate layers. In fact, this trans-
lation algorithm is identical to that of composite layers [11]. In our
previous work, however, there are no proof showing that the trans-
lation preserves behavior. In this section, we formulate the transla-
tion algorithm more concisely by using the set notations, and prove
that FECJ◦ and FECJ [1] (obtained by the translation algorithm)
are behaviorally equivalent. To prove this behavioral equivalence,
it is enough to prove that active layers obtained by evaluating con-
ditions stored in AT after applying the applicable transition rules
are exactly the same as those obtained by applying the applicable
transition rules under the translated layer transition rules.

Before showing the translation, we need to explain some prepro-
cessing that are required to perform the translation. The translation
shown in [11] firstly constructs a state transition diagram (as shown
in Figure 1) from the layer transition rules; i.e., we translate TT into
the canonical form where t.1 = t.3 and t.2 = ∅ for all t ∈ TT
(we write the nth element of t in TT as t.n). The translation then
constructs a parallel composition of TT .

Now, we formulate this translation as a compilation from FECJ◦

into FECJ, which translates AT and TT into layer transition rules in
FECJ, say TT ′, as follows:

Let L be the set of all contexts within the program.
TT ′(`) =

let TTc(`) = {L: • ?L→L \ t.3⊕ t.4|L ∈ Π2L,
t = {t ∈ TT(`)|app(t, L)} 6= ∅}

in
let equiv(x) =

L
{y ∈ 2L|layer(x) ⊆ layer(y)} in

TT(`)⊕ {layer(t.1) : (TTc(`).1 \ t.1) ∩ equiv(t.1)?
layer(t.3)→layer(t.4)|t ∈ TTc(`)}

Intuitively, TTc(`) is a superset of parallel composition of TT;
it consists of all combinations of transition rules that can be con-
structed over L, restricting the fourth element to be filtered by rules
in TT that are applicable on given L. This formulation is performed
to make the proof easy. Since every rule t ∈ TTc(`) that are not
in the parallel composition of TT never become applicable during
computation, this formulation does not affect the result of compila-
tion.

The result of compilation is a union of TT(`) (transition rules in
the FECJ◦ program) and the layer transition rules constructed from

AT by assigning layers that are active on the condition when t.n is
active. These layers are obtained by evaluating the layer function.
The second element in the resulting transition rule is a guard to
preserve the original behavior of implicit layer activation (we write
TTc(`).1 as a shorthand of

L
{t.1|t ∈ TTc(`)}). This guard is

required, because activation of layers occurs only under specific
condition of contexts.

Now, we formulate the theorem ensuring that the set of layers
obtained by TR-SWITCHLAYER and that obtained by applying
layer transition rules under TT ′ are identical .

THEOREM 4.1. If J[v`]|µ −→FECJ◦ J[v]|pµ and J [v`]|µ −→FECJ

J[v]|p′µ where −→FECJ is evaluated under TT′, then p = p′ for
some v, `, and µ.

PROOF. See Appendix B.

Example: the composite layers and transition rules shown in
Section 2 is translated into the following layer transition rules:

// transition rules from the original program
transition Focusing:
TabIsUnfocused ? TabIsUnfocused -> TabIsFocused

| -> TabIsFocused;
transition Unfocusing:
TabIsFocused ? TabIsFocused -> TabIsUnfocused

| -> TabIsUnfocused;
transition BatteryLow: -> EnergySaved;
transition ACConnected: EnergySaved ->;
// generated transition rules
transition Focusing:
InfrequentUpdate,!EnergySaved ?
InfrequentUpdate -> FrequentUpdate

-> FrequentUpdate;
transition Unfocusing
FrequentUpdate ?
FrequentUpdate -> InfrequentUpdate

-> InfrequentUpdate;
transition BatteryLow:
FrequentUpdate ?
FrequentUpdate -> InfrequentUpdate

-> InfrequentUpdate;
transition ACConnected:
InfrequentUpdate,!TabIsUnfocused ?
InfrequentUpdate -> FrequentUpdate

-> FrequentUpdate;
transition ACConnected:
InfrequentUpdate,!TabIsFocused,!TabIsUnfocused ?

InfrequentUpdate ->;

5. Related Work
Costanza and D’Hondt have proposed a method analyzing the de-
pendency between layers; the method involves the use of feature
diagrams [2], where each feature is mapped onto a layer. They pro-
vide an extension of ContextL [3] to represent composite layers
(layers that correspond to composite features). Since their method
can represent relations between layers, for example, “layer A in-
cludes one of layers B, C, and D” and/or “layer X includes all layers
Y and Z,” it shares similarities with our approach. The difference is
that their approach provides explicit activation of composite layers,
while other layers (depending on the activated layers) are automat-
ically activated. Although explicit activation of composite layers is
sometimes convenient when we know that all the constituent lay-
ers are active on some parts of the base program, it does not solve
the problems addressed in this paper, because the problems require

not the automatic composition of layers but flexible mapping from
contexts to layers.

Tanter et al. proposed context-aware aspects [14], which are as-
pects whose behaviors depend on contexts. This concept is realized
as a framework where a context is defined as a pointcut, which is
similar to AspectJ’s if pointcut while also being capable of re-
stricting the past contexts. Contexts are composable, because they
are realized as pointcuts.

There are several COP languages that are not layer-based. Inter-
estingly, these languages share some similarities with the extended
version of EventCJ proposed in this paper. For example, Ambi-
ence [6] and its successor AmOS [5] are prototype-based context-
oriented languages featuring multimethods and subjective dispatch.
Unlike layer-based COP languages, a context is reified as an object
that is implicitly argumented to the method invocation. Thus, each
context-dependent method is defined with a context, which can be
a combined context that is similar to the composition of contexts in
the when clause of activate declarations. While an activate declara-
tion can be declared with an arbitrary proposition, Ambience and
AmOS support only intersections. Subjective-C [4] is an extension
of Objective-C with context-orientation concepts. Like Ambience
and AmOS, in Subjective-C, context-dependent behaviors are de-
fined for each method using the #context annotation that specifies
a context on which the method depends. It provides a small domain-
specific language (DSL) to represent relations between contexts.
Our proposal, on the other hand, puts more emphasis on grouping
behaviors that are executable under the same context. Thus, our
approach is still layer-based and it has the advantages of aforemen-
tioned languages by bridging between contexts and layers.

6. Concluding Remarks
In this paper, we presented an formalization of composite layers.
This clarifies some significant facts about the operational semantics
of composite layers such as the evaluation order between layer
transition rules and propositions from composite layers, and the
order of active layers. The proofs provided by this paper ensure
that the composite layer mechanism does not go wrong and the
translation-based implementation is sound.

References
[1] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko Masuhara. Feather-

weight EventCJ: a core calculus for a context-oriented language with
event-based per-instance layer transition. In COP’11, 2011.

[2] Pascal Costanza and Theo D’Hondt. Feature descriptions for context-
oriented programming. In 2nd International Workshop on Dynamic
Software Product Lines (DSPL’08), 2008.

[3] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming – an overview of ContextL. In
Dynamic Language Symposium (DLS) ’05, pages 1–10, 2005.

[4] Sebastián González, Micolás Cardozo, Kim Mens, Alfredo Cádiz,
Jean-Christophe Libbrecht, and Julien Goffaux. Subjective-C:
Bringing context to mobile platform programming. In SLE’11,
volume 6563 of LNCS, pages 246–265, 2011.

[5] Sebastián González, Kim Mens, and Alfredo Cádiz. Context-oriented
programming with the ambient object systems. Journal of Universal
Computer Science, 14(20):3307–3332, 2008.

[6] Sebastián González, Kim Mens, and Patrick Heymans. Highly
dynamic behaviour adaptability through prototypes with subjective
multimethods. In DLS’07, pages 77–88, 2007.

[7] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3):125–151,
2008.

[8] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko Masuhara. Con-
textFJ: a minimal core calculus for context-oriented programming. In
FOAL ’11, pages 19–23, 2011.

[9] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ:
a context-oriented programming language with declarative event-
based context transition. In AOSD ’11, pages 253–264, 2011.

[10] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. Bridging
real-world contexts and units of behavioral variations by composite
layers. In Proceedings of the 4th International Workshop on Context-
Oriented Programming (COP’12), 2012.

[11] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. Introduc-
ing composite layers in EventCJ. IPSJ Transactions on Programming,
6(1):1–8, 2013.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Grisword. An overview of AspectJ. In
ECOOP’01, pages 327–353, 2001.

[13] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer
composition in ContextJS. Science of Computer Programming,
76(12):1194–1209, 2011.

[14] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel.
Context-aware aspects. In SC 2006, volume 4089 of LNCS, pages
227–242, 2006.

A. Proof of Theorem 3.1
Before giving the proof, we develop the following lemma:

LEMMA A.1. If e|µ −→ e′|µ′ and L ` AT(L) iff L ∈ L for all
v 7→ new C(v)<L> ∈ µ and L ∈ dom(AT), then R ` AT(R) iff
R ∈ R for all w 7→ new C(w)<R> ∈ µ′ and R ∈ dom(AT).

PROOF. Straightforward induction on e|µ −→ e′|µ′. We show
the case of R-LABEL.

R ∈ R and R ∈ dom(AT)

≡ R ∈ R⊕ layer(R′) and R ∈ dom(AT)

(by definition of R; i.e., R = R′ ⊕ layer(R′))

≡ R ∈ layer(R′) and R ∈ dom(AT)

(by the fact that R′ ∩ dom(AT) = ∅)
≡ R ∈ layer(R′ ⊕ layer(R′)) and R ∈ dom(AT)

(since layer(x) = layer(x⊕ y) for any y ⊆ dom(AT))

≡ R′ ⊕ layer(R′) ` AT(R) and R ∈ dom(AT)

(by definition of layer)
≡ R ` AT(R) and R ∈ dom(AT)

(by definition of R)

We are now ready to give the proof of THEOREM 3.1, which is
immediately given by LEMMA A.1. �

B. Proof of Theorem 4.1

Before giving the proof, we develop a number of required lemmas.
We write t.n as a shorthand for

L
{t.n|t ∈ t}. We write |L̄| as a

set of all elements in L̄, and ΠX as a set of all permutations for X .

LEMMA B.1. Let L be a sequence of layers satisfying

layer(L) = L ∩ dom(AT)

Then, for any x ∈ Π2L, layer(x) ⊆ layer(L) holds if

layer(x) ∩ L = layer(x)

PROOF.
layer(x) ∩ L = layer(x)
≡ layer(x) ⊆ L

(by def. of ⊆)
≡ layer(x) ∩ dom(AT) ⊆ L ∩ dom(AT)

(monotonicity of · ∩dom(AT))
≡ layer(x) ⊆ L ∩ dom(AT)

(since layer(x) ⊆ dom(AT) by def. of layer)
≡ layer(x) ⊆ layer(L)

(since layer(L) = L ∩ dom(AT)) �

LEMMA B.2. Let L be a sequence of layers satisfying

layer(L) = L ∩ dom(AT)

Then |L\dom(AT)| ⊆ x for any x ∈ 2L and ` if all of the following
equations hold:

• ∃t ∈ TT(`).t.1 ∩ L = t.1 ∧ t.2 ∩ L = •
• ∃t ∈ TT(`).t.1 ∩ x = t.1 ∧ t.2 ∩ x = •
• layer(x) ∩ L = layer(x)
• (TTc(`).1 \ x) ∩ equiv(x) ∩ L = •

PROOF.
(TTc(`).1 \ x) ∩ equiv(x) ∩ L = •
≡ |L| \ x = •

(|L| ⊆ equiv(x), |L| ⊆ TTc(`).1 and x ⊆ TTc(`).1)
≡ |L| \ dom(AT) ⊆ x �

LEMMA B.3. Let L = R be a sequence of layers that satisfies
layer(L) = L ∩ dom(AT). Then for any label ` ∈ dom(TT), the
following equation holds:

L\L′ \dom(AT)⊕L′′⊕ layer(L\L′ \dom(AT)⊕L′′) = R\R′⊕R′′

where L′, L′′, R′ and R′′ are:

R′ =
L
{t.3|t ∈ TT′(`), app(t, R)}

R′′ =
L
{t.4|t ∈ TT′(`), app(t, R)}

L′ =
L
{t.3|t ∈ TT(`), app(t, L)}

L′′ =
L
{t.4|t ∈ TT(`), app(t, L)}

PROOF. By Lemma B.1 and B.2. �

We are now ready to give the proof of THEOREM 4.1, which is
immediately given by LEMMA B.3. �

