
On-Demand Layer Activation for Type-Safe Deactivation

Tetsuo Kamina
Ritsumeikan University
kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology

aotani@is.titech.ac.jp

Atsushi Igarashi
Kyoto University

igarashi@kuis.kyoto-
u.ac.jp

ABSTRACT
Dynamic layer deactivation in context-oriented programming
(COP) allows a layer to be dynamically disabled in the run-
ning application in a disciplined way. Deactivating a layer
may lead to an error if there is another layer which has been
activated but depends on the deactivated layer in the sense
that the latter calls a method that exists only in the former.
A type system or static analysis might be able to check the
absence of such depending layers at each deactivation point
but it would not be very easy, especially in the open-world
setting.

We argue that the on-demand activation, which implic-
itly activates all layers on which currently activated layer
depends, addresses this problem. In this mechanism, the
precedent layer deactivation is canceled when the depending
layer requires the implementation of the deactivated layer.
This means that this mechanism can ensure that all method
calls succeed without performing the checks of absent de-
pending layers, which simplifies the type system. We formal-
ize this idea as an extension of ContextFJ, a COP extension
of Featherweight Java, and prove its type soundness.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Languages

Keywords
Dynamic layer deactivation, ContextFJ, Type soundness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
COP’14 July 29, 2014, Uppsala, Sweden
ACM 978-1-4503-2861-6 ...$15.00.
http://dx.doi.org/10.1145/2637066.2637070

1. INTRODUCTION
Context-Oriented Programming (COP) is an approach to

improve modularity of variations of behavior that depend on
contexts [9]. A number of COP languages provide linguis-
tic constructs that modularize such variations using layers,
and that activate/deactivate them according to the execut-
ing contexts [2, 3, 6, 14]. A layer defines a number of partial
methods. A partial method is a method that can run before,
after, or around a (partial) method with the same name and
signature defined in a different layer or a class. Thus, it
provides the specific behavior of the system only when the
layer is active.

In this paper, we consider a language mechanism in COP,
method introduction by layers, i.e., allowing a layer to de-
clare partial methods that introduce new behavior to exist-
ing classes. This mechanism makes the type system inter-
esting, and actually there are a number of cases where such
mechanism is useful in particular when we can describe de-
pendency between layers using, e.g., the requires relations
[11]. However, this mechanism makes the type system com-
plex when we consider dynamic layer deactivation, which
disables the layer dynamically. If a layer can introduce new
methods, deactivating a layer may lead to an error if there
is another layer that has been activated but depends on the
deactivated layer in the sense that the latter calls a method
that exists only in the former. We might develop a type
system that can check the absence of such depending layers
at each deactivation point. However, it would not be very
easy, especially in the open-world setting. In fact, although
a number of COP calculi have been developed thus far [4, 10,
1, 11, 15], none of them combines the method introduction
by layers with dynamic layer deactivation.

In this paper, we argue that on-demand activation, which
implicitly activates all layers on which currently activated
layer depends, addresses this problem. This mechanism is
formerly known in [5, 16], but is not discussed in the setting
of method introduction by layers. We show that this mech-
anism simplifies the type system because it can ensure that
all method calls succeed without performing the checks of
absent depending layers. The idea is that, instead of activat-
ing the depended layers when the depending layer becomes
active, our mechanism postpones the activation of depended
layers until when each method call occurs. In this sense, our
mechanism is different from those proposed in [5, 16]. We
formalize this idea as an extension of ContextFJ [11], a COP
extension of Featherweight Java [12]. Our calculus, Con-
textFJ\, includes layer deactivation (i.e., without), which is
not included in ContextFJ, and provides dynamic semantics

and a type system modified from ContextFJ according to
the above idea. We prove its type soundness.

The rest of this paper is organized as follows. Section 2
reviews the language mechanisms for COP, in particular the
method introduction by layers and dynamic layer deactiva-
tion, and argues that how on-demand activation addresses
the aforementioned problem. Section 3 introduces the syn-
tax, operational semantics, and type system of ContextFJ\.
Section 4 concludes this paper and discusses related work.

2. TYPE-SAFE LAYER DEACTIVATION

2.1 Reviewing COP Mechanisms
We show the motivation for combining dynamic layer de-

activation and method introduction by layers by using the
telecom simulation example. This example includes classes
Customer and Connection to represent customers and phone
calls between them, respectively.

class Customer { .. }

class Connection {

Connection(Customer a, Customer b) { .. }

void complete() { .. }

void drop() { .. }

}

The usage of these classes is demonstrated as follows:

Connection simulate() {

Customer tetsuo = .., tomoyuki = ..;

Connection c =

new Connection(tetsuo, tomoyuki);

// Tetsuo calls Tomoyuki

c.complete(); // Tomoyuki accepts

c.drop(); // Tomoyuki hangs up

return c;

}

Then, we consider two additional features, measuring the
duration of phone calls, and calculating and charging the
cost of them, which are dynamically composed with the
system. In COP, such dynamically composed features are
implemented using layers. The following Timer layer imple-
ments the former feature:

layer Timing {

class Connection {

Timer timer;

void complete() { proceed(); timer.start(); }

void drop() { timer.stop(); proceed(); }

int getTime() { return timer.getTime(); }

}

}

Two partial methods, complete and drop, override the orig-
inal methods when Timing is active (as explained below).
This layer also introduces a method, getTime, and a field,
timer. The proceed() calls delegate behavior to overridden
methods.

Layers can dynamically be composed with the system by
using layer activation. The following ensure construct [11]
is provided for this purpose.

ensure Timing {

Connection c = simulate();

System.out.println(c.getTime());

}

without Timing { // free talk

Connection c = Connection(tetsuo, naoko);

c.complete();

ensure Billing {

// checks the amount of charge for

// the past charged calls

System.out.println(c.getAmount());

}

c.drop();

}

Figure 1: Activating Billing within the activation of
Timing.

The layer activation is effective for the dynamic extent of
the execution of the ensure block. Thus, during the exe-
cution of the simulate method, the Timing layer is active;
when complete and drop are called, the corresponding par-
tial methods defined in Timing that start and stop the timer
respectively are called. Note that we can call getTime, which
is introduced in Timing, within the ensure block.

The latter feature is implemented by the layer Billing,
which is defined as follows:

layer Billing requires Timing {

class Connection {

int amount = 0;

int getAmount() {

return amount;

}

void charge() {

int cost = getTime(); amount += cost;

.. charge the cost on the caller .. }

void drop() { proceed(); charge(); }

}

}

This layer overrides the drop method and introduces two
methods, getAmount and charge, which calculate the cost
of phone calls and charge that cost, respectively. The cost is
calculated based on the duration of phone calls. This means
that this layer assumes that Timing is active when the partial
methods defined in this layer is called. This assumption is
denoted by the requires clause in the first line of the layer
declaration.

In ContextFJ [11], to activate Billing, we need to acti-
vate Timing before, which means that Billing can be acti-
vated only within the ensure block that activates Timing.

ensure Timing {

ensure Billing { simulate(); }

}

Within ensure Billing, both Timing and Billing are ac-
tive, and the partial methods in Billing override the ones
in Timing because Billing is the most recently activated
layer. Thus, drop called in simulate charges the cost of the
phone call on the caller.

2.2 Problem Statements
Method introduction by layers interacts badly with dy-

namic layer deactivation. The piece of code in Figure 1 rep-
resenting a free phone call illustrates this problem. Within

without Timing, which deactivates Timing so as to make the
phone call free, Billing is activated just to check the total
amount of charges for the past calls. Of course, this check
of charges does not require any Timing functions; the getA-

mount method just returns the current amount of charges
that are accumulated during the past phone calls. There are
two problems in this code. First, assuming that ContextFJ
supports without, this code is rejected by the compiler just
because the activation of Billing is not enclosed within
Timing. ContextFJ forces us to activate Timing whenever
we want to activate Billing. This enforcement is applied
even when we use the feature of Billing that does not de-
pend on Timing.

Second, actually ContextFJ does not support without.
If layers can dynamically be deactivated, the invocation of
a method introduced by the deactivated layer results in a
failure when the layer depending on the deactivated layer
calls that method. To statically check such an error, we
need to gather information about “which layer is absent” at
each deactivation point, which is not be very easy, especially
in the open-world setting.

2.3 On-Demand Activation
We argue that on-demand activation addresses the afore-

mentioned problems. It implicitly activates layers on which
currently activated layer depends. To represent this mech-
anism, we propose the activates clause that specifies the
layers that are implicitly activated when the declared layer
is used.

layer Billing activates Timing {

/* The body is the same as above */

}

We can activate Billing anywhere, regardless of the con-
dition whether this activation is enclosed with the activation
of Timing. For example, the activation of Billing within
without Timing shown in Figure 1 is now allowed.

On-demand activation also simplifies programs when we
require both Billing and Timing. For example, when we
call the simulate method with the feature of charging, we
enclose this method call just within ensure Billing instead
of activating Timing explicitly:

ensure Billing { simulate(); }

The layer specified by the activates clause (Timing) be-
comes active just before the partial method defined in Billing

is called, and is deactivated after that call. Thus, the above
piece of code safely executes the feature of charging of the
phone call as in the case where we explicitly enclose this
piece of code within ensure Timing.

Note that the activation of Timing is not performed when
Billing is activated but postponed until when each method
call occurs. If the activation of Timing is performed when
Billing is activated by ensure, the following code

ensure Billing { without Timing { c.charge(); }}

would result in an error because charge calls getTime, which
is introduced by Timing but it is deactivated within the con-
text of the call of charge. Thus, it is necessary to activate
Timing at each method call. In this sense, our mechanism
is different from those proposed in [5, 16].

We can even call the method introduced by Timing within
the ensure Billing block as follows.

ensure Billing {

Connection c = ..;

c.complete();

c.drop();

System.out.println(c.getTime());

}

This piece of code activates Billing and calls getTime in-
troduced by Timing. This is allowed because we know that
within ensure Billing, Timing will be active around each
method call.

This mechanism makes the type system as simple as that
of ContextFJ. It is not necessary to gather the information
about the absent layers, because the on-demand activation
ensures that a call of method introduced by the layer spec-
ified by activates always succeed. We further discuss the
type system in Section 3.

One may wonder if on-demand activation makes it diffi-
cult to reason about the fact that the body of layer specified
by without is never executed within the dynamic extent of
the without block. For example, we do not want to execute
any“timing” functions during the free talk (Figure 1). Actu-
ally, the same problem exists in the existing COP languages
supporting without, because they also allow us to activate
a layer within the without block that deactivate that layer.
To address this problem, we can apply other static analyses
such as model checking to validate such a requirement.

One may also wonder if, instead of introducing activates,
we could wrap the body of a partial method that requires
another layer in an ensure statement to activate that layer.
For example, at first, enclosing the bodies of charge and
drop belonging to Billing by ensure Timing {..} seems
to work. Actually, this workaround does not work in Con-
textFJ (as well as many of COP languages), where the be-
havior of proceed calls is fixed when the method is invoked
and does not change by surrounding layer (de)activation
statements. Thus, proceed in Billing may not proceed
to partial methods in Timing.

2.3.1 Activation order
If multiple layers are active, there may be multiple partial

methods with the same name and signature and thus the
partial method lookup should be performed in a well-defined
order. Most of COP languages take the strategy that the
most recently activated layer has the highest priority.

When we consider the on-demand activation, we also need
to define the order of layers that are activated implicitly. For
example, the method calls within ensure Billing { ..}

activate Timing if it is not active before the execution of en-
sure block. Since the body of Billing assumes that Timing
is already active, it is necessary that Billing has a higher
priority than Timing. Similarly, if Timing activates another
layer, that layer should have the lowest priority, followed by
Timing and Billing.

We also have to consider the situation where a layer acti-
vates multiple layers as follows.

layer A activates L1,..,Ln { .. }

In this case, the layers specified by the activates clause
become active in the order specified by the programmer:
L1, L2, · · · , Ln. Furthermore, there is a set of layers that L1

activates, another set of layers that each element of that
set activates, and so on; i.e., we need to obtain a transitive
closure Λ1 of the activates relation for L1. Similarly, there

are transitive closures Λ2, · · · , Λn of the activates relation
for L2, · · · , Ln, respectively. We need to carefully consider
the order of those active layers. For example, we cannot put
the layers Λ2 after L1 if L1 activates some elements in Λ2.

In general, the ordering of active layers is determined as
follows.

1. Insert layers specified by the activates clause of each
activated layer into the tail of the list of activated lay-
ers (the head of that list has the highest priority).

2. Repeat 1 for each newly activated layer until when
there are no layers declaring activates.

This rule ensures that the layers specified by activates al-
ways have lower priority than that of the layer declaring
activates. Thus the call of method introduced by the layer
declared in activates never fails1.

Note that we also need to remove the duplicated layers
from the list of active layers. To avoid duplicate calls of
the same partial method in one single method call, most
COP languages disallow the same layer to be active twice at
the same time. However, the above rule does not eliminate
such duplicate layers. For example, if the layer A activates
layers C and B, and the layer B activates the layer C, ensure
A { .. } results in the list of active layers: C,B,C,A. The
duplicated layer C should be removed before the execution
of the method body starts.

Again, we need to be careful to remove such duplicated
layers. Removing the layer activated by other layer may
result in failure when the activating layer calls a method in-
troduced by the activated layer. For example, if we remove
C at the left-hand side of B in the above list of active layers,
the call of partial method declared in B that uses methods
introduced by C may result in failure. Thus, to finalize the
creation of the list of active layers, we need to remove du-
plicate layers from that list according to the rule described
as follows:

If the same layer is activated twice or more in the
same list of active layers, we remove those layers
other than the one that has the lowest priority
from that list.

2.3.2 On-demand activation vs requires relation
Instead of the requires construct in [11] where the re-

quiring layer assumes that the required layers are already
active, the activates construct activates all the “required”
layers one after another. This mechanism can eliminate un-
necessary and tedious nesting of ensure blocks, and easily
enables type checking of layer activation for COP languages
with the method introduced by layers and without.

We do not argue that requires should be replaced with
activates, however. The requires construct would exert
its usefulness on requiring the interface of layers (although
the current version of requires in [11] requires the imple-
mentation of the specified layers.) In requires, we may as-
sume that the layers providing this interface are active but
do not have to concern about the concrete implementations.
Likewise, we may write the requires clause like “requires
LayerA or LayerB.” The activates construct is not suitable

1We assume that there are no cycles in the activates rela-
tion.

CL ::= class C / C { C f; K M } (classes)
K ::= (constructors)

C(C f){ super(f); this.f = f; }

M ::= C m(C x){ return e; } (methods)
e, d ::= x | e.f | e.m(e) | new C(e) (expressions)

| ensure L e | without L e

| proceed(e) | super.m(e)
| new C(v)<C,L,L>.m(e)

v, w ::= new C(v) (values)

Figure 2: ContextFJ\: abstract syntax

for specifying such interfaces, because the resulting activa-
tion (of the implementation) would be ambiguous. Thus, we
consider that requires and activates are complementary.

3. FORMALIZATION
We formalize the aforementioned idea as a core calculus

ContextFJ\. Due to the limited space, we only present key
rules throughout this section. Omitted rules are identical to
those in [11].

3.1 Syntax
Let metavariables C, D, E, and F range over class names; L

over layer names; f and g over field names; m over method
names; and x and y over variables, which contain a spe-
cial variable this. The abstract syntax of ContextFJ\ is
shown in Figure 2. As in FJ, overlines are used to de-
note sequences: i.e., f stands for a possibly empty sequence
f1, · · · , fn and similarly for C, x, e, and so on. Layers in a
sequence are separated by semicolon. The empty sequence
is denoted by •. We write “C f” for “C1 f1, · · · ,Cn fn,”
where n is the length of C and f, and similarly “C f;” as
shorthand for the sequence of declarations “C1;· · · Cn fn;,”
“this.f=f;” for “this.f1=f1;· · · ;this.fn=n;,” and “f=e”
for “f1=e1, · · · ,fn=en.” We use commas and semicolons for
concatenations. Sequences of field declarations, parameter
names, layer names, and method declarations are assumed
to contain no duplicate names.

Class declarations, constructors, methods are the same
as those of FJ (and thus as those of ContextFJ). A class
declaration CL consists of its name, its superclass name, field
declarations C f, a constructor K, and method definitions M.
A constructor K is a trivial one that takes initial values of all
fields and sets them to the corresponding fields. A method M

takes x as arguments and returns an expression e (and thus
it is a functional calculus).

An expression e can be a variable, field access, method in-
vocation, object instantiation, layer activation/deactivation,
and proceed/super call. It can also be special run-time ex-
pressions that are not supposed to appear in classes like new

C(v)<C,L,L>.m(e). The expression new C(v)<C,L
′
,L>.m(e),

where L
′

is assumed to be a prefix of L, basically means
that m is going to be invoked on new C(v). The annotation
<C,L

′
,L> indicates where method lookup should start, and

is used to give a semantics of super and proceed by simple
substitution-based reduction.

Unlike the existing COP languages, the calculus does not
provide syntax for layers. Partial methods are registered
in a partial method table. Let R be a binary relation on
layer names; (L1, L2) ∈ R intuitively means that layer L1

filter(fix(L)) = L
′

L
′ ` new C(v)<C,L

′
,L
′
>.m(w) −→ e′

L ` new C(v).m(w) −→ e′
(R-Invk)

mbody(m, C′, L
′′
, L
′
) = x.e in C′′, (L

′′′
; L0)

class C′′ / D{...}

L ` new C(v)<C′,L
′′
,L
′
>.m(w) −→2664

new C(v) /this,
w /x,

new C(v)<C′′,L
′′′
,L
′
>.m/proceed,

new C(v)<D,L
′
,L
′
> /super

3775 e

(R-InvkP)

ensure(L, L) = L
′

L
′ ` e −→ e′

L ` ensure L e −→ ensure L e′

(R-Ensure)

remove(L, L) = L
′

L
′ ` e −→ e′

L ` without L e −→ without L e′

(R-Without)

Figure 3: ContextFJ\: computation (selected)

activates L2. In the following sections, we assume a fixed
dependency relation between layers and write L act Λ, read
“layer L activates layers Λ,” when Λ = {L′|(L, L′) ∈ R}.

A ContextFJ\ program (CT,PT,e) consists of a class table
CT, which maps a class name to a class definition, a partial
method table PT, which maps a triple C, L, m of class, layer,
and method names to a method definition, and an expression
that corresponds to the body of the main method. In what
follows, we assume that CT and PT satisfy the following
sanity conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).

2. Object 6∈ dom(CT).

3. For every class name C (except Object) appearing any-
where in CT, we have C ∈ dom(CT).

4. There are no cycles in the transitive closure of the /
clauses.

5. There are no cycles in the transitive closure of the act

clauses.

6. PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈
dom(PT).

3.2 Operational semantics
The operational semantics is given by a reduction relation

of the form L ` e −→ e′, read “expression e reduces to e′

under the activated layers L.” The reduction rules are shown
in Figure 3. We only show the rules for method invocation,
partial method invocation, ensure and without. For other
rules, the reader can consult the ContextFJ paper [11].

The rule R-Invk is for method invocation. It initializes
the cursor of the method lookup to be at the receiver’s class

and the currently activated layers. Note that the activated
layers L

′
is updated in the hypothesis part. The auxiliary

function fix is defined as follows. We write L act Λ to denote
Λ as shorthand for the set union “Λ1 ∪Λ2 ∪ · · · ∪Λn” where
L1 act Λ1, L2 act Λ2, · · · , and Ln act Λn. We apply set
operators (such as \) to sequences by regarding the operand
sequence as a set. We assume that the elements in Λ are
ordered as specified by the programmer when Λ is used as
an argument to fix.

L act Λ fix(Λ); L = L
′

fix(L) = L
′

L act ∅
fix(L) = L

The auxiliary function filter removes duplication of active
layers as specified in Section 2.3.1.

The rule R-InvkP deals with the case where the method
body is found in layer L0 in class C′′. In this case, proceed in
the method body is replaced with the invocation of the same
method with the cursor pointing to the next layers L

′′
. The

auxiliary function mbody, which is defined in [11], returns
the parameters and body x.e of method m in class C′ when
the search starts from L

′′
. L
′

keeps track of the layers that
are active when the search initially started. It also returns
the information on where the method has been found.

The following two rules relate to layer activation and de-
activation. The rule R-Ensure means that e in ensure L

e should be executing by activating L and all layers in tran-
sitive closure of act for L. The auxiliary function ensure is
defined as

ensure(L, L) = L (if L ∈ L)
ensure(L, L) = L; L (otherwise)

Similarly, the rule R-Without means that e in without L

e should be executing under the context where L is absent.
The auxiliary function remove(L, L) removes L from L (or
returns L if L is not in L). Once the evaluation of the body
of ensure/without is finished, it returns the value of the
body, which is omitted in this paper.

3.3 Type system
In this section, we give a type system of ContextFJ\ with

type-safe layer deactivation. Typing rules for classes, meth-
ods, and partial methods are identical to those of ContextFJ.
Thus, we only discuss expression typing.

A type environment, denoted by Γ, is a finite mapping
from variables to class names (that are also types). We write
x : C for a type environment Γ such that dom(Γ) = {x} and
Γ(xi) = Ci for any i. We use L to stand for a location, which
is either • (the main expression), C.m (the body of method
m in class C in the base layer), or L.C.m (the body of method
m in class C in layer L).

The typing rules for expressions are shown in Figure 4.
A type judgment for expressions is of the form L; Λ; Γ `
e : C, read “expression e is given type C under context Γ,
location L, and a set of statically-known activated layers
Λ.” Activated layers Λ are supposed to be a subset of layers
actually activated when the expression is evaluated at run
time. We only show the typing rules for method invocation,
partial method invocation, ensure and without.

The rule T-Invk is for method invocation. The auxiliary
function mtype searches the method m in C under the set
of active layers Λ′, and returns a pair, written C → C0, of
argument types C and a return type C0. Note that this rule
ensures that all layers in transitive closure of act for Λ are
active in the arguments for mtype. The rule T-Proceed

L; L; Γ ` e : C

L; Λ; Γ ` e0 : C0 mtype(m, C0, Λ′, Λ′) = D→ D0

fix(Λ) = Λ′ L; Λ; Γ ` e : E E<:D

L; Λ; Γ ` e0.m(e) : D0

(T-Invk)

L act Λ′ mtype(m, C, Λ′, Λ′ ∪ {L}) = D→ D0

L.C.m; Λ; Γ ` e : E E<:D

L.C.m; Λ; Γ ` proceed(e) : D0

(T-Proceed)

L; Λ ∪ {L}; Γ ` e : C

L; Λ; Γ ` ensure L e : C
(T-Ensure)

L; Λ \ {L}; Γ ` e : C

L; Λ; Γ ` without L e : C
(T-Without)

Figure 4: ContextFJ\: expression typing (selected)

for partial method invocation is similar. The set Λ of ac-
tive layers is updated in the rule T-Ensure for ensure L

e, which requires that the layer L is active in the hypothe-
sis part. The typing rule for without L e requires that the
layer L is deactivated in the hypothesis part.

3.4 Properties
The type soundness theorem for ContextFJ\ is stated

below. We assume that the typing rule for the program
` (CT, PT, e) : C is provided as specified in [11].

Theorem 3.1 (Subject Reduction). Suppose given class
and partial method tables are well-formed. If •; L; Γ ` e : C
and L ` e −→ e′, then •; L; Γ ` e′ : D for some D such that
D<:C.

Theorem 3.2 (Progress). Suppose given class and par-
tial method tables are well-formed. If •; L; • ` e : C, then
either e is a value or L ` e −→ e′ for some e′.

Theorem 3.3 (Type Soundness). If ` (CT, PT, e) :
C and e reduces to a normal form, then e is new D(v) for
some v and D such that D<:C.

4. CONCLUSIONS AND RELATED WORK
We have formalized a type system for dynamic layer de-

activation with on-demand layer activation and proved its
soundness. One key idea is to activate all the depended lay-
ers one after another at each method call, and to compute
the activation order of them. We have not implement this
mechanism. The performance issue remains as future work.

This result is sufficient for a particular layer activation
mechanism, ensure, which does not change the order of al-
ready activated layers. We believe that this mechanism can
also be applied to other layer activation mechanisms such
as with that always activates the specified layer as the first
layer to be executed by changing the order of already acti-
vated layers (by applying the proof of safety of proceed calls
even when the order of active layers is changed at runtime
[13]).

Layer activation that is implicitly performed when the
layer that depends on that layer becomes active is proposed
in the setting of composite layers [5, 16]. In [5], an extension
of ContextL [6] with layer composition operators that are as
expressive as compositions in feature diagrams [17] (such as
and-composition and or-composition). At each layer acti-
vation point, it calculates the set of depended layers and
activates them. If that set is ambiguous, it suspends the
execution until when the user resolves this ambiguity. In
[16], the similar mechanism is discussed in the setting of
event-based layer transition [14]. FECJ◦ [15] formalizes the
operational semantics of composite layers, but does not pro-
vide method introduced by layers and its type system.

The dependency between layers can also be specified in
some COP languages such as Subjective-C [7] and Ambi-
ence [8]. In these languages, such dependency is checked at
runtime.

5. REFERENCES
[1] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko

Masuhara. Featherweight EventCJ: a core calculus for
a context-oriented language with event-based
per-instance layer transition. In COP’11, 2011.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt,
and Hidehiko Masuhara. ContextJ: Context-oriented
programming with Java. Computer Software,
28(1):272–292, 2011.

[3] Malte Appeltauer, Robert Hirschfeld, Hidehiko
Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-specific software composition in
context-oriented programming. In SC’10, volume 6144
of LNCS, pages 50–65, 2010.

[4] Dave Clarke and Ilya Sergey. A semantics for
context-oriented programming with layers. In COP’09,
2009.

[5] Pascal Costanza and Theo D’Hondt. Feature
descriptions for context-oriented programming. In
DSPL’08, 2008.

[6] Pascal Costanza and Robert Hirschfeld. Language
constructs for context-oriented programming – an
overview of ContextL. In DLS’05, pages 1–10, 2005.

[7] Sebastián González, Micolás Cardozo, Kim Mens,
Alfredo Cádiz, Jean-Christophe Libbrecht, and Julien
Goffaux. Subjective-C: Bringing context to mobile
platform programming. In SLE’11, volume 6563 of
LNCS, pages 246–265, 2011.

[8] Sebastián González, Kim Mens, and Alfredo Cádiz.
Context-oriented programming with the ambient
object systems. Journal of Universal Computer
Science, 14(20):3307–3332, 2008.

[9] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125–151, 2008.

[10] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko
Masuhara. ContextFJ: a minimal core calculus for
context-oriented programming. In FOAL’11, pages
19–23, 2011.

[11] Atsushi Igarashi, Robert Hirschfeld, and Hidehiko
Masuhara. A type system for dynamic layer
composition. In FOOL’12, pages 13–24, 2012.

[12] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java

and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[13] H Inoue. A proof of soundness of type system for
dynamic layer composition. Undergraduate honors
thesis, Kyoto University, 2013.

[14] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. EventCJ: a context-oriented programming
language with declarative event-based context
transition. In AOSD ’11, pages 253–264, 2011.

[15] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. A core calculus of composite layers. In
FOAL’13, pages 7–12, 2013.

[16] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. Introducing composite layers in EventCJ.
IPSJ Transactions on Programming, 6(1):1–8, 2013.

[17] Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson.
Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon
University, 1990.

