
Embedding XML Processing Toolkit on General Purpose Programming
Language

Tetsuo Kamina and Tetsuo Tamai
Graduate School of Arts and Sciences

University of Tokyo
Tokyo, Japan

{kamina,tamai}@graco.c.u-tokyo.ac.jp

Abstract

Many methods for XML processing have been proposed
in the last few years. One popular approach is to process
XML documents by using existing programming languages.
Another popular approach is to create a new programming
language specialized to the domain of XML processing. We
propose a new approach of constructing XML processors:
embedding XML processing language on Lisp. Owing to
this approach, we may seamlessly invoke the functions of
XML-specific language from Lisp.

The other novel features of our approach are shuffle ex-
pression pattern matching and dynamic validation of XML
documents. A shuffle expression is an extension of a regu-
lar expression; it supports shuffle (interleave) operator that
is useful, for example, to represent unordered records such
as bibliography data. Dynamic validation makes it possible
to validate XML documents with respect to the schema or
patterns at run time.

1. Introduction

XML[15] is a markup language that can be typed by
schema languages such as DTD, XML Schema[13], and
RELAX NG[8]. This ability of typing will improve safety
of data exchange and processing; therefore, XML has been
considered as a standard format for data exchanged over
networks such as the Internet.

Many methods for XML document processing have been
proposed in the last few years. One popular approach is to
process XML documents by using existing programming
languages[14, 18]. The advantage is that we can make use
of all the features provided by the host language. The dis-
advantage is that XML documents must be “injected” to the
host language: it must be restricted within the value and
type space of the host language. Another popular approach

is to create a new programming language specialized to the
domain of XML processing [1, 4, 7, 9, 16, 17]. By this ap-
proach, we can design comprehensive syntax and semantics
suitable for XML processing with the cost of difficulty in
complex computation.

We set our goal to take both of these advantages: to use
all the features provided by a general purpose programming
language and devise a convenient XML-specific language
in the same environment. In this paper, we propose a new
approach: embedding an XML-specific language on Lisp.
Using the strong macro feature of Lisp, we embed new syn-
tax on Lisp that defines XML transformation rules. Without
seams, this embedded language can be invoked from Lisp.
It also may use functions and macros provided by Lisp.

The other novel features of this embedded language are
shuffle expression pattern matchinganddynamic validation
of XML documents. Shuffle expression pattern matching is
the process of extracting data from the middle of an XML
document. It also may be regarded as the process of validat-
ing the input (the unprocessed) XML document, that is the
process of judging whether the XML document is matched
against the shuffle expression pattern (which corresponds to
the schema of XML). We say an XML document is valid
if it does not violate the constraints expressed by the decla-
rations and definitions in the corresponding schema or pat-
tern. As we described above, this ability of validation (also
regarded as type checking) is one of the most important
features of XML. Our shuffle expression pattern matching
is similar to XDuce’s regular expression pattern matching
[3, 4], but it supports shuffle (interleave) operator, as RE-
LAX NG schema language does [8], and shuffle closure op-
erator. Shuffle operator is very powerful, for example, to
represent unordered records such as bibliography data.

Besides the input documents, we also require to vali-
date the output (the processed) XML documents either. Dy-
namic validation makes it possible to validate the processed
XML documents with respect to the schema at run time. To

1

XML parser

XML generator

XML processor

Embedded XML-specific
Language processor Application

(e.g. HTTP server)

Lisp process

HTTP protocol

XML
documents

Dictionary of
schema of XML

Figure 1. Architecture

implement it, we introduce theXML element serverwhich
acts like a dictionary of DTDs.

In the next section, we show the architecture of our em-
bedded language and related tools. Then, after presenting
the definition of shuffle expressions, we show the features
of the language by examples. In appendix, we define the
formal syntax and operational semantics of shuffle expres-
sion pattern matching.

2. Architecture

Our XML processing toolkit is composed of the follow-
ing constructs (Figure 1):

• XML processor

It consists of XML parser and XML generator. The
XML parser converts XML documents to S expres-
sions of Lisp, and the XML generator does the inverse
operation, conversion of S expressions to XML.

• XML element server

This is a dictionary of schemas of XML. The XML
processor uses it at the dynamic validation stage (see
Section 4).

• XML transformation language

This is an embedded XML-specific language that
transforms XML documents into other XML or non-
XML documents. It has an ability of shuffle expression
pattern matching (see Section 3).

These tools and other applications (such as HTTP server,
for example) may be executed in the same Lisp process.

S expressions representing XML. In our toolkit, XML
documents are represented as S expressions of Lisp inter-
nally. For example, the XML document shown in Fig-
ure 2 is represented by S expressions shown in Figure 3.
In this example, XML element<last> is represented
as:last , and<profile xml:lang="en"> is repre-
sented as(:profile :|xml:lang| "en") . Besides

<profile xml:lang="en">
<last>Kamina</last>
<first>Tetsuo</first>
<affiliation>Univ. of Tokyo</affiliation>
<office>15-610</office>
<email>kamina</email>

</profile>

Figure 2. An example XML document

((:profile :|xml:lang| "en")
(:last "Kamina")
(:first "Tetsuo")
(:affiliation "Univ. of Tokyo")
(:office "15-610")
(:email "kamina"))

Figure 3. An example S expression represent-
ing XML document

these logical structure of XML, we may also represent the
physical structure of XML (that is the reference structure)
using S expressins. We built the XML parser compliant to
the W3C XML specification [15], that is, if internal enti-
ties are referenced in the content, then include them in the
content, or if external parsed entities are referenced in the
content, then include them for validation, or if external un-
parsed entities are referenced as attribute values, then just
notify them to the application, and so on.

The formal syntax of S expressions representing XML
documents is as follows:

sexpr ::= (element content*)
element ::= name

(name attlist*)
attlist ::= name string
content ::= string

lispCommand
sexpr

name is a string prefixed by ‘: ’ (Lisp symbols interned in
thekeywordpackage).lispCommand is Lisp expressions
which are to be evaluated.

In general, API for XML processing such as DOM[14]
is rather complicated. In contrast, adopting S expression
based approach, we are free from designing and implement-
ing such API because S expressions can be manipulated di-
rectly using Lisp primitives.

3. Embedding XML-specific language in Com-
mon Lisp

As mentioned in the previous sections, we require to use
general purpose programming language and XML-specific

2

language in the same environment. We embed new syntax
for XML processing that behaves as a part of Common Lisp
processing.

For XML document processing, we use shuffle expres-
sion pattern matching that extracts data from the middle of
an XML document. Shuffle expressions are extension of
regular expressions equipped with shuffle operations (shuf-
fle and shuffle closure). This section provides the definition
of shuffle operations and shows how shuffle expression pat-
tern matching is used in XML processing by examples.

3.1. Shuffle expressions

Let Σ be a set of alphabet,Σ∗ be a set of words overΣ
and the empty wordλ is included inΣ∗. The shuffle opera-
tor¯ (Σ∗ × Σ∗ → 2Σ∗) is defined inductively as follows:

• for all u ∈ Σ∗, u¯ λ = λ¯ u = {u},
• for all u, v ∈ Σ∗, a, b ∈ Σ,

au¯ bv = a(u¯ bv) ∪ b(au¯ v).

For any languagesL1, L2 ⊂ Σ∗, L1 ¯ L2 is defined as
follows:

L1 ¯ L2 =
⋃

u∈L1,v∈L2

u¯ v

For any languagesL ⊂ Σ∗, the shuffle closure operator⊗
is defined as follows:

L⊗ =
∞⋃

i=0

L¯i, where L¯0 = {λ}, L¯i = L¯ L¯i−1

Jedrzejowicz and Szepietowski proposed shuffle au-
tomaton that accepts shuffle expressions[5]. Although shuf-
fle expression pattern matching may be implemented upon
it, to make algorithm simpler and get higher performance,
we restrict positions of shuffle operators to appear only at
the root of parse tree deriving the following definition of
shuffle1 expressions.

Definition 3.1 If R1, R2 are regular expressions, thenR1+
R2, R1 ·R2, R∗1, R1¯R2 andR⊗1 are shuffle1 expressions,
and nothing else is a shuffle1 expression.

3.2. A simple example

We illustrate how shuffle expression pattern matching
is powerful by taking a simple example: a bibliography
database.

In this database, bibliography data are divided into four
types: book, article, inproceedings, and misc. Each datum
is stored as an XML document. The applications are:

• Conversion from BibTeX to XML

• Conversion from XML to HTML

@book{graham96,
 author="Paul Graham",
 title="ANSI Common Lisp",
 publisher="Prentice Hall",
 year="1996"
}
@inproceedings{

}

<book>
 <id>graham96</id>
 <author>Paul Graham</author>
 <title>ANSI Common Lisp</title>
 <publisher>Prentice Hall</publisher>
 <year>1996</year>
</book>

Figure 4. Conversion from BibTeX to XML

<element name="article">
<interleave>

<element name="id"><text/></element>
<element name="author"><text/></element>
<element name="title"><text/></element>
<element name="journal"><text/></element>
<element name="year"><text/></element>
<optional>

<element name="volume"><text/></element>
</optional>
<optional>

<element name="number"><text/></element>
</optional>
<optional>

<element name="pages"><text/></element>
</optional>
<optional>

<element name="month"><text/></element>
</optional>
<optional>

<element name="note"/><text/></element>
</optional>

</interleave>
</element>

Figure 5. A fragment of RELAX NG document

3.3. Conversion from BibTeX to XML

To enrich our database, we exploit existing bibliography
resources; we convert BibTeX files into XML documents.

How to convert BibTeX files into XML documents is
shown in Figure 4. One BibTeX entry corresponds to an
XML document. Different types of bibliography corre-
spond to different schemas of XML documents. For exam-
ple, @article{ ... } bibliography type corresponds
to a schema written by RELAX NG document shown in
Figure 5. RELAX NG is an XML schema language that
is equipped with interleave (i.e. shuffle) types. As the or-
der of fields of BibTeX entries is not important, we use the
<interleave> p1 p2 </interleave> pattern in the
RELAX NG document, which means the elements in pat-
ternp1 and the elements in patternp2 may be interleaved.

3

(:article (% (:id $id)
(:author $author)
(:title $title)
(:journal $journal)
(:year $year)
(? (:volume $volume))
(? (:number $number))
(? (:pages $pages))
(? (:month $month))
(? (:note $note))))

Figure 6. An example of patterns

3.4. Conversion from XML to HTML

In the following subsections, we show some example
programs of our embedded XML transformation language
and discuss its advantages.

Patterns as a schema language.One of the novel fea-
tures of our XML transformation language is shuffle ex-
pression pattern matching. An example of XML pattern is
shown in Figure 6. Strings prefixed by ‘: ’ denote names
of XML elements1, and strings prefixed by ‘$’ denote pat-
tern variables. Furthermore, in XML patterns, we may put
shuffle expression operators as well as regular expression
operators:seq (sequence),or (choice), ? (optional), *
(Kleene’s closure),+ (zero or more),%(shuffle operator̄)
and& (shuffle closure operator⊗).

For example, the XML document

<article>
<id>helzmann97</id>
<author>G. J. Holzmann</author>
<title>The Model Checker SPIN</title>
<journal>IEEE Transactions on

Software Engineering</journal>
<volume>23</volume>
<number>5</number>
<year>1997</year>

</article>

matches the pattern of Figure 6. The bindings of pattern
variables are as follows:

$id = ("holzmann97")
$author = ("G. J. Holzmann")
$title = ("The Model Checker SPIN")
$journal = ("IEEE Transaction on

Software Engineering")
$volume = ("23")
$number = ("5")
$year = ("1997")

1To make discussion simple, we assume all XML elements belong to
the default namespace, and no XML elements have attributes

(defrule article (:article
(% (:id $id)

(:author $author)
(:title $title)
(:journal $journal)
(:year $year)
(? (:volume $volume))
(? (:number $number))
(? (:pages $pages))
(? (:month $month))
(? (:note $note))))

(:table
(:caption

(format nil "Article ID: ˜A" $id))
(:tr (:th "Author") (:th "Title")

(:th "Journal") (:th "Year")
(:th "Volume") (:th "Number")
(:th "Pages") (:th "Month")
(:th "Note"))

(:tr (:td $author) (:td $title)
(:td $journal) (:td $year)
(:td $volume) (:td $number)
(:td $pages) (:td $month)
(:td $note))))

Figure 7. An example program

It is important to note that we may regard this pattern as a
schema of XML. In fact, the pattern of Figure 6 is equiva-
lent to RELAX NG document of Figure 5. The difference
between a pattern and a schema is that a pattern has opera-
tional semantics such as binding of variables.

Embedded XML transformation language. We now
explain how to process XML by shuffle expression pattern
matching. Basically, we process XML documents by trans-
formation. An example of transformation rules is shown in
Figure 7. The syntax ofdefrule is as follows:

(defrule <name> <input_pattern>
<output_pattern>)

It returns a Common Lisp function that accepts an instance
of XML pattern <input_pattern> and transforms it
into <output_pattern> . If it receives an XML doc-
ument which is not an instance of<input_pattern> ,
it returns nil . By pattern matching described above,
some data extracted from the middle of an XML doc-
ument that matched against<input_pattern> are
bounded to the variables. These variables are used in
<output_pattern> . In <output_pattern> , we
may also put any Lisp expressions that are to be evalu-
ated. In Figure 7, we put aformat expression inside
the :caption XML element. This is a very simple ex-
ample but we may put any complex computation inside
<output_pattern> .

4

Most interestingly,defrule returns an ordinary Com-
mon Lisp function. We can invoke it from other part of Lisp
program as follows:

(generate-xml "html"
‘(:html

(:head (:title "Foo"))
(:body

,(article (parse-xml p))))
:public "-//W3C//DTD XHTML 1.0 Strict//EN"
:validate t)

This example shows thearticle function defined in Fig-
ure 7 is called inside the backquoted parameter of other
Lisp function namedgenerate-xml . generate-xml
is XML generator introduced in Section 2. It can validate
generated XML documents using the XML element server;
therefore, validity of transformed XML documents (i.e. va-
lidity of transformation programs) may be assured dynam-
ically. parse-xml is an XML parser introduced in Sec-
tion 2. It parses an XML document that is sent to the input
stream (namedp) and returns S expression of XML[6].

3.5. Ambiguous patterns

In general, the semantics of shuffle expression pattern
matching can be ambiguous. For example, the following
pattern

(seq (* (:a $foo)) (* (:a $bar)))

is ambiguous because how many contents of element
a the variable $foo should take cannot be decided.
There are two approaches to treat this problem: the all
match approach and the single match approach. The
all match approach returns all possible bindings of vari-
ables, while the single match approach yields just a sin-
gle binding. Even though some query language takes the
all match approach[1, 9, 12], we concentrate on the sin-
gle match approach here. We resolve this ambiguity by
taking the longest match policy, that is patterns appear-
ing earlier have higher priority. For example, the value
((:a "a1") (:a "a2") (:a "a3")) matches the
previous pattern and the result of pattern match is as fol-
lows:

$foo = ("a1" "a2" "a3")
$bar = nil

3.6. Implementation issues

Implementing shuffle expression pattern matching is not
trivial work. Shuffle expressions can be simulated by reg-
ular expressions; however, with this approach, the number
of states will easily explode. Shuffle automaton[5] resolves
this problem but it requires backtracking, which leads to the
performance decline. In our toolkit, performance is impor-
tant because it validates input values dynamically.

<!DOCTYPE xdoc [
...
<!ELEMENT foo (a,(b|c)*)+>
...
]>

Figure 8. An example of element declaration

name: :foo
attlist: nil
children: (((6 :a) 7)

((7 :a) 7)
((7 :b) 7)
((7 :c) 7))

begin-state: 6
final-states: (7)
doctype: "xdoc"

Figure 9. CLOS instance for element declara-
tion

In the previous section, we defined the restricted ver-
sion of shuffle expressions. According to this definition, we
may simulateshuffle1 expression with multiple small size
finite state automata. For example, the shuffle automaton
for R1 ¯ R2 can be simulated by executing the automata
for R1 andR2 concurrently. Each automaton may be deter-
ministic; therefore, the pattern matching engine may be run
without backtracking.

How about ambiguous shuffle expressions, such asab¯
ac? If it receives the sequence of alphabets likeacab ,
which “a” of shuffle expressions eacha will be associated
with? To enumerate all combinations, backtracking is re-
quired. However, we are not sure about the usefulness of
such ambiguous shuffle expressions and believe there is lit-
tle possibility for them to be used. Therefore, our imple-
mentation ofshuffle1 expression pattern matching restricts
the occurrence of the same elements in the operands of shuf-
fle operators. The same restriction is also found in the RE-
LAX NG specification[8].

4. Dynamic validation

Owing to the ability of pattern matching, the validity
of input (unprocessed) XML documents ofdefrule is
checked at run time. But how about the output values pro-
duced bydefrule ? To check the validity of output (pro-
cessed) XML documents automatically, out toolkit should
be able to validate output XML documents as well as in-
put. To tackle this problem, we introduce theXML element
server.

XML element server acts like a dictionary of DTDs,
which remains permanently in the run-time memory of the

5

Lisp process. It is implemented as an association list of doc-
ument type names (the key) and CLOS (Common Lisp Ob-
ject System) instances ofDOCTYPEclass (the value). In-
stances of DOCTYPE class contain hashtables of XML el-
ements, entities, and other information specific in that doc-
ument type. XML elements are also represented as CLOS
instances. For example, the instance representing XML el-
ementfoo in Figure 8 is shown in Figure 9.

The children slot (member) plays the main role of
validating XML documents. It represents an automaton
converted from the regular expression in the declaration of
Figure 82. Thebegin-state andfinal-state slots
are the initial state and the final state(s) of this automaton,
respectively. The XML processor can validate XML docu-
ments at run time by executing this automaton.

Suppose the XML processor tries to validate the given
XML documents. Using the name from DOCTYPE decla-
ration of the XML documents, the XML processor searches
the corresponding DOCTYPE instance in the XML element
server. If it is found, the XML processor uses it. If it is not
found, the XML processor tries to parse the DTD file that
exists at the URI path in the DOCTYPE declaration, and
registers it to the XML element server so that no more pars-
ing of DTD is necessary.

Multiple schema validation and namespace aware
validation[11] should be explored in the future work.

5. Related work

DOM (Document Object Model)[14] is a popular API
for XML processing. DOM based parser converts XML
documents into object trees. Each object may be manipu-
lated via DOM API, so we can write XML processing pro-
grams using this API. The problem is although DOM based
parsers validate XML documents with respect to schemas
of XML, there is no systematic way of validating processed
DOM trees.

Representing XML documents as S expressions itself is
not new. Franz Inc. released a Lisp based XML parser[2]. It
represents XML documents as S expressions internally, but
there is no systematic way of validating XML documents.
SXML[10] is also a representation of XML documents in
the form of S expressions whose processor is developed by
Scheme.

Wallace and Runciman proposed to use Haskell for
XML processing [18]. It defines mapping from DTDs into
Haskell data types. XML documents are represented as in-
stances of Haskell data types. Using Haskell’s type system,
validity of XML documents can be (partially) assured stati-
cally.

2The automaton in Figure 9 looks like a DFA of(a,(a|b|c)*) but
it is equal to a DFA of(a,(b|c)*)+ .

These approaches may be categorized as “injected” ap-
proaches, that is to make XML documents accessible from
existing programming languages. Even though these ap-
proaches make it possible to use all the features provided by
the programming languages, XML documents are restricted
by the value and type space of the host language. For ex-
ample, representing XML documents as trees of objects re-
quires that internals of each object should be accessed only
via interfaces. The problem is that recent extension of re-
quirements of XML processing makes DOM API very com-
plex. Haskell approach has another kind of problem. The
types of XML documents must be restricted to type space
which can be represented by Haskell type system.

On the contrary, there are many XML-specific program-
ming languages such as XSLT[16], XQuery[17], XDuce[4],
YAT[9], and XMlambda[7]. XSLT is an XML based
XML transformation language called a stylesheet language.
XQuery is a query language of XML databases. There is no
systematic way of validating processed XML documents for
them.

XDuce is a statically typed functional programming lan-
guage for XML processing. It has novel features of regular
expression pattern matching and regular expression types.
Using its own type system, the validity of XML documents
(and validity of XDuce programs) is assured statically. XM-
lambda also takes a similar approach. There are no static
type systems for shuffle expressions; by taking a dynami-
cally typed approach, we make it possible to perform shuffle
expression pattern matching.

By taking approaches of constructing XML-specific lan-
guages, we may design programming languages suitable for
XML processing; however, it is difficult to perform complex
and flexible computation. We take the approach of design-
ing an XML-specific language and implementing it “on”
the existing programming language. The XML-specific lan-
guage still makes use of all the features of the host language
(Lisp), and we may also invoke the functions of XML-
specific language seamlessly from Lisp.

The relationship between these related approaches and
our’s is shown in Table 1.

6. Concluding remarks

We show a new approach for developing XML process-
ing toolkit. By representing XML documents as S expres-
sions, we are free from designing and implementing API
for XML processing because it can be directly accessed us-
ing Lisp primitives. Shuffle expression pattern matching is
a powerful language construct. Example programs shown
in this paper are simple but adequate to show how our em-
bedded XML transformation language accepts XML docu-
ments with schema equipped with interleave types such as
RELAX NG. They also show how we can write flexible pro-

6

Table 1. Related work
General purpose languagesXML-specific languages

Dynamic validation (with shuffle) Our approach
Static validation (without shuffle) Haskell XDuce, XMLambda, YAT

No systematic validation DOM, Franz Inc. , SXML XSLT

grams with features of Lisp, how XML transformation rules
can be invoked from Lisp programs seamlessly, and how we
can write robust programs exploiting dynamic validation.

We consider our embedded XML transformation lan-
guage is suitable for applications involving complicated
processing. We plan to implement some large scale appli-
cations using it.

Acknowledgements. Information-technology Promotion
Agency, Japan partially funded this research. Hidehiko Ma-
suhara and Atsushi Igarashi gave very helpful comments on
the earlier version of our software.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener. The Lorel query language for semistructured
data. International Journal on Digital Libraries, 1(1):68–
88, 1997.

[2] Franz Inc. A Lisp Based XML Parser.
http://www.franz.com.

[3] H. Hosoya and B. Pierce. Regular expression pattern
matching for XML. In The 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 67–80, January 2001.

[4] H. Hosoya and B. Pierce. XDuce: A Typed XML Processing
Language. InProceedings of Third International Workshop
on the Web and Databases (WebDB2000), pages 226–244,
May 2000.

[5] J. Jedrzejowicz and A. Szepietowski. Shuffle languages are
in P. Theoretical Computer Science, 250:31–53, 2001.

[6] T. Kamina, T. Yuasa, and T. Tamai. A Light-Weight Pro-
gramming Interface for XML. InProceedings of the Fourth
Workshop on Internet Technology (WIT2001). Japan Society
for Software Science and Tecknology (JSSST), September
2001.

[7] E. Meijer and M. Shields. XMlambda: A Functional Lan-
guage for Constructing and Manipulating XML Documents.
Submitted to USENIX 2000 Technical Conference, 1999.

[8] OASIS. RELAX NG Specification. http://www.oasis-
open.org/committees/relax-ng/, November 2001.

[9] J. Sim’eon and S. Cluet. Using YAT to Build a Web Server.
In Proceedings of International Workshop on the Web and
Databases (WebDB’1998), 1998.

[10] SXML. http://okmij.org/ftp/Scheme/SXML.html.
[11] W3C. Namespaces in XML.

http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[12] W3C. XML-QL: A Query Language for XML.
http://www.w3.org/TR/NOTE-xml-ql/.

[13] W3C. XML Schema. http://www.w3.org/XML/Schema.
[14] W3C. Document Object Model (DOM) Level 1 Speci-

fication. http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001/, 1998.

[15] W3C. Extensible Markup Language (XML) 1.0 2nd edition.
http://www.w3.org/TR/2000/REC-xml-20001006, 1998.

[16] W3C. XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt, 1999.

[17] W3C. XQuery 1.0 and XPath 2.0 Data Model.
http://www.w3.org/TR/query-datamodel/, 2001.

[18] M. Wallace and C. Runciman. Haskell and XML: Generic
Combinators or Type-Based Translation? InProceed-
ings of the Fourth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’99), pages 148–159,
September 1999.

A. Formalization

We formally define the syntax and operational semantics
of shuffle expression pattern matching here.

A.1. Syntax of patterns

A shuffle expression pattern is an S expression whose
head is an XML element, ashuffle1 expression pattern, or a
variable:

pattern ::= (element pattern*)
shuffle1
variable

A shuffle1 expression pattern is a regular expression pat-
tern, or S expression whose head is an shuffle operator or
shuffle closure operator and whose tail is regular expression
patterns. A regular expression pattern is an S expression
whose head isseq , or , * , + or ?, or a fragment of XML
document.

shuffle1 ::= (’%’ regular+)
(’&’ regular)
regular

regular ::= (’seq’ regular+)
(’or’ regular+)
(’*’ regular)
(’+’ regular)
(’?’ regular)
sexpr

7

sexpr ::= (element sexpr*)
string
variable

element is a string prefixed by ‘: ’. variable is a string
prefixed by ‘$’.

A.2. Operational semantics of shuffle expression
pattern matching

We provide an internal form of operational semantics of
shuffle expression pattern matching. Internal tree valuest
are defined as follows:

t ::= ε leaf
(l t∗) label

A label is an XML element (and its attributes).t∗ means
a sequence of trees. Sometimest∗ denotes(t1 · · · tn) but
sometimes it also denotest1, · · · , tn. We do not distinguish
them in the internal form.

Even though we presented a syntax of pattern match-
ing above, to make discussion simple, we provide following
definitions of internal form of patterns:

P ::= x variable
ε leaf
(% P P) shuffle
(& P) shuffle closure
(seq P ∗) sequence
(or P P) selection
(∗ P) Kleene’s closure
(l P ∗) label

%, &, seq, or, and∗ are same as%, &, seq , or , and* . We
define% andor only in the case of binary trees, but it can
be generalized.l is an XML element (and its attributes).

The semantics of pattern matching is similar to the reg-
ular expression pattern matching of XDuce[3]. The differ-
ence is we provide the rules for shuffle (MAT-SFL) and shuf-
fle closure (MAT-SFC). The semantics of pattern matching
is given by the acceptance relation and matching relation.
The acceptance relationt∗ ∈ P is read “sequence of value
tree t∗ is an instance of patternP ”. The matching rela-
tion of patternP is defined ast∗ ∈ P ⇒ V that is read
“substitution of variables withinP is defined asV ”. V is
a map from variables to value trees (or sequences of value
trees). t ∈ P ⇒ V is a special case oft∗ ∈ P ⇒ V .
Matching relation of sequence of patternsP ∗ is defined as
t∗ ∈ P ∗ ⇒ V . It is important to distinguishP ∗ (sequence
of patterns) and(∗ P) (Kleene’s closure of pattern). The
rules of matching relations are defined as follows:

t∗ ∈ x ⇒ {x 7→ t∗} (MAT-BND)

ε ∈ ε ⇒ ∅ (MAT-EPS)

t∗1 ∈ P1 ⇒ V1, · · · , t∗n ∈ Pn ⇒ Vn

(t∗1 · · · t∗n) ∈ P1, · · ·Pn ⇒ V1 ∪ · · · ∪ Vn
(MAT-CDR)

t∗1 ∈ P ⇒ V1, · · · , t∗n ∈ P ⇒ Vn

(t∗1 · · · t∗n) ∈ (∗ P) ⇒ V1 ∪ · · · ∪ Vn
(MAT-CLS)

t∗1 ∈ P ⇒ V1, · · · , t∗n ∈ P ⇒ Vn

t∗1 ¯ · · · ¯ t∗n ∈ (& P) ⇒ V1 ∪ · · · ∪ Vn
(MAT-SFC)

t∗ ∈ P ∗ ⇒ V

t∗ ∈ (seq P ∗) ⇒ V
(MAT-SEQ)

t∗ ∈ P1 ⇒ V

t∗ ∈ (or P1 P2) ⇒ V
(MAT-OR1)

t∗ ∈ P2 ⇒ V

t∗ ∈ (or P1 P2) ⇒ V
(MAT-OR2)

t∗1 ∈ P1 ⇒ V1 t∗2 ∈ P2 ⇒ V2

t∗1 ¯ t∗2 ∈ (% P1 P2) ⇒ V1 ∪ V2
(MAT-SFL)

t∗ ∈ P ∗ ⇒ V

(l t∗) ∈ (l P ∗) ⇒ V
(MAT-LAB)

We write t∗ ∈ P ⇒ (x 7→ u) when t∗ ∈ P ⇒ V and
V (x) = u. {x 7→ u} ∪ {x 7→ v} is interpreted as{x 7→
(u v)}.

These matching rules are ambiguous: a single pattern
can be matched in different ways. We resolve this ambi-
guity by adopting a “longest match” policy where patterns
appearing earlier have higher priority.

8

