
Vol. 4, No. 10, 2005

Flexible Method Combination based on Mixin
Subtyping

Tetsuo Kamina, JST CREST, Japan
Tetsuo Tamai, The University of Tokyo, Japan

A mixin is a reusable module that provides uniform extensions and modifications to
classes. It is an abstract subclass that is composable with a variety of superclasses.
In mixin-based composition, however, the problem of accidental overriding arises. A
method declared in a mixin may accidentally override its superclass’s method. To
tackle this problem, we propose a selective method combination that selects where
the method invocation starts, and where method body execution jumps in the case
of super invocation, by using the static type information of the receiver. We use the
flexible mixin-based subtyping rules that allow subtype relations to be not restricted to
the immediate inheritance relations; therefore, flexible control of method combination
is achieved. To describe precisely how selective method combination works, we for-
malize this mechanism over McJava, an extension of Java with mixin-types. We also
implement this mechanism by source code translation to Java thus making it runnable
on a standard Java virtual machine.

1 INTRODUCTION

A mixin [3] is a reusable module that provides uniform extensions and modifications
to classes. It is a partially implemented subclass that is composable with a variety of
“superclasses.” Compared with single inheritance scheme, mixin-based composition
provides much more reusability because it has the ability to add common features
(that will be duplicated in a single inheritance hierarchy) to a variety of classes.
Mixin-based composition has been popularized by CLOS [15, 12] and there are
many attempts to integrate mixins with mainstream strongly typed object-oriented
languages [2, 11].

One problem of mixin-based composition is known as accidental overriding [1].
Since a mixin does not know which superclass the mixin will be composed with, the
mixin may accidentally override methods declared in the superclass. This overriding
should be avoided, because it harmfully changes the behavior of the superclass. This
problem is not so simple, however, because a mixin may also intentionally overrides
its superclass’s methods (in this case, we explicitly declare methods imported from
the superclass, then override them in a mixin; e.g., as explained in the following
sections, we can use the requires clause for this purpose in programming language
McJava [11]). Furthermore, we should consider that, in Java-like languages, we may
combine the overriding method with the overridden (the original) method by using
super invocation. Therefore, if we have an inheritance chain of mixins with mixture

Cite this document as follows: Tetsuo Kamina and Tetsuo Tamai: Flexible Method Combina-
tion based on Mixin Subtyping, in Journal of Object Technology, vol. 4, no. 10, 2005, pages
95–115,
http://www.jot.fm/issues/issues 2005 12/

http://www.jot.fm/issues/issues_2005_12/

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

of intentional and accidental overriding, we should consider where the execution of
method invocation should start, and where method body execution should jump
when it contains super. We need a new mechanism of method lookup.

In this paper, we propose a selective method combination that selects where the
method invocation starts, and which method body executes in the case of super

invocation, by using the static type information of the receiver. In this paper, we use
the flexible mixin-based subtyping rules that allow subtype relations to be not re-
stricted to the immediate inheritance relations; therefore, flexible control of method
combination is achieved. To describe precisely how the selective method combina-
tion works, we have formalized this mechanism over McJava, an extension of Java
with mixin-types [11], by extending dynamic semantics of Core McJava, the core
calculus of McJava. We have also implemented this mechanism. The implementa-
tion technique used in the proposed language is an extension of hygienic mixins [1].
Since McJava provides very flexible subtyping rules, applying the implementation
techniques of hygienic mixins is actually a non-trivial issue.

Our approach may look specific only to be applied to McJava because it depends
on McJava subtyping rules. However, some languages such as gbeta [4] allow similar
mechanism with McJava. We believe that the proposal of this paper can be appli-
cable to such languages. Furthermore, as shown in the following sections, subtyping
in McJava is a generalization of inheritance-based subtyping. When this subtyping
scheme is introduced into other languages, the problem treated in this paper always
arises and the proposed solution may be useful.

The rest of this paper is structured as follows. In section 2, we show the prob-
lem of accidental overriding and explain why the selective method combination is
required. In section 3, we propose a new method lookup mechanism that solves the
aforementioned problem. In section 4, we formalize the proposed system. In section
5, we sketch how to implement the proposed approach in the McJava compiler that
translates McJava programs to Java programs. Section 6 compares this work with
other related work, and section 7 concludes this paper.

2 THE PROBLEM OF ACCIDENTAL OVERRIDING

In Figure 1, we illustrate the problem of accidental overriding by using McJava
programming language. The statement beginning with mixin is a mixin declaration.
A mixin declaration has the following form,

mixin X [requires I] { ... }

where X denotes the name of mixin and I denotes the interface that the mixin
requires. This means that classes that implement interface I can be composed with
mixin X. For example, class Person can be composed with mixin Employee, because
it implements the interface that the mixin Employee requires (i.e. String name()

96 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

2 THE PROBLEM OF ACCIDENTAL OVERRIDING

class Person {

String _name;

String name() { return _name; }

}

mixin Employee requires { String name(); } {

String id, title;

String name() { return title+super.name(); }

String getID() { return id; }

}

mixin Student {

String id;

String getID() { return id; }

}

class Main {

public static void main(String[] args) {

Employee e =

new Student::Employee::Person();

String id = e.getID();

...

}

}

Figure 1: Accidental Overriding in McJava

method). Note that McJava uses structural subtyping instead of nominal subtyping to
determine whether such composition is allowed or not. While nominal subtyping (by
using named interfaces) gives more exact information of composable superclasses,
structural subtyping increases flexibility of composition. Mixins are often composed
with many other classes that do not share the same named interfaces (e.g., Person
in Figure 1 does not implements any interfaces); therefore, like many other mixin
based languages [2, 5], McJava employs the structural subtyping approach.

The imported methods declared in the requires clause can be referred in the
body of mixin. A mixin can overrides the imported methods and call the original
method by using the super notation, e.g., super.name() called inside Employee.name().
In this case, we say that Employee intentionally overrides the method String

name().

Mixin Employee can be composed with class Person, and this composition is
written as Employee::Person. This composition is regarded as a subclass derived
from the Person class, with subclass body declaration being the same as the body
of Employee. In Figure 1, this composition is further composed with another mixin
Student.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 97

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

The mixin Employee also declares method String getID() that returns the
identification number at the company, and the mixin Student declares the same
method that returns the identification number at the school. In class Main, we com-
pose Student with Employee and Person and create its instance (which means an
employee who is also a student). This instance is referred by variable e whose static
type is Employee. When getID() method is invoked on e, we expect Employee.getID()
to be executed; however, if the normal method lookup rule of Java stipulating the
most specific method to be always selected is applied, Student.getID() is called.
Because it behaves differently from Employee.getID(), the result of method call
e.getID() does not satisfy the expectation of the user of e. Therefore, in this case
the alternative method lookup scheme is required.

By preserving the static type information of variable e, we can invoke Employee.
getID() instead of Student.getID(). This mechanism is known as hygienic mixins
[1, 14]. If we adopt this scheme, there can be more than one method that has the
same name and the same formal parameter types on that composition. We may
select a method to be invoked by using static type information. Furthermore, if we
intentionally override the getID() method in a possible subclass of that composition,
then there will exist multiple combinations of methods: methods combined by calling
the original method with super. To show when this situation occurs, we use the
following example.

Suppose we have a mixin Id that imports a method String getID() from a
superclass, and intentionally override it.

mixin Id requires { String getID(); }{

String getID() { return super.getID(); }

...

}

This mixin implements a concern of identification, performing identification-related
tasks. The getID() method declared in that mixin calls super.getID() and returns
its result. This method is regarded as an abstract method that can be called by
other methods declared in that mixin. This is a variety of template design pattern [6],
even though the template implemented by the mixin turns the method call structure
upside down.

We can compose Id with Employee and Student, adding identification-specific
operations to those mixins. Furthermore, as shown previously, an employee may
also become a student. We have the following composition:

Id::Student::Employee p =

new Id::Student::Employee::Person();

processIdOfEmployee(p);

processIdOfStudent(p);

98 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

2 THE PROBLEM OF ACCIDENTAL OVERRIDING

In this case, both of Employee and Student provides String getID() method.
Then, a question arises; when Id.getID() executes the expression super.getID(),
which method should be called, Employee.getID() or Student.getID()?

The answer to the question depends on the static type of the instance referred by
the variable p. Suppose the processIdOfEmployee method is declared as follows:

void processIdOfEmployee(Id::Employee e) {

String id = e.getID();

...

}

McJava allows a composition Id::Student::Employee to be a subtype of Id::
Employee, which means, in McJava, subtype relations are not restricted to the
immediate inheritance relations. In Id::Employee, Id immediately inherits defi-
nitions from Employee. In Id::Student::Employee, Id transitively inherits def-
initions from Employee. The composition Id::Employee has the same members
of Id::Student::Employee, so the latter is conceptually a subtype of the former.
Therefore, the instance of latter can safely be type-casted to the former. This
subtyping is a generalization of inheritance-based subtyping that adds much more
flexibility to programs. This flexibility increases the chance of reusing programs
that use composition types in their source code. If this subtyping is not allowed,
an instance of Id::Student::Employee cannot be assigned type Id::Employee;
therefore, some safe programs are rejected by the type checker.

In the above case, local variable e has type Id::Employee. The implementer
of this method cannot predict what e’s actual type is; e.g. the implementer cannot
predict Id will be composed with Student. If Student.getID() is called instead of
Employee.getID() in the consequence of super.getID() in ID, the same problem
of accidental overriding occurs. Therefore, the executed code of super.getID() in
Id.getID() should be Employee.getID().

On the other hand, the definition of processIdOfStudent is:

void processIdOfStudent(Id::Student s) {

String id = s.getID();

...

}

In this case, local variable s has static type Id::Student; therefore, the executed
code of super.getID() in Id.getID() should be Student.getID(). Therefore, we
should have multiple method combinations: [Id.getID(), Employee.getID()] and
[Id.getID(), Student.getID()].

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 99

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

3 SOLVING THE PROBLEM BY USING SELECTIVE METHOD COM-
BINATION

To tackle the problem, we propose a new method lookup scheme that allows selective
method combination i.e. when we have multiple candidates for method call to super,
we can select which method to execute by using the static type information. To
explain our approach, we assume that mixins A, B, C, D and a class E have a method
void m(). Mixins B and D also require a method void m() and call super.m()
inside the definition of B.m() and D.m(), which means they intentionally override a
method void m(). Finally, an instance of a composition A::B::C::D::E is created
and stored into a local variable o whose static type is B::D (Figure 2):

B::D o = new A::B::C::D::E();

o.m();

In this case, A.m() and C.m() accidentally override the superclass method, and
B.m() and D.m() intentionally override the superclass method. Because the method
o.m() is invoked with the static scope B::D, the method that B.m() overrides should
be D.m(). Since C.m() accidentally overrides D.m(), the executed method should
be B.m() and D.m() (followed by E.m()).

We sketch the method lookup algorithm as follows:

1. In our approach, the method lookup (e.g. o.m()) starts with the bottom of
static inheritance chain (that is B in Figure 2. We mean a static inheritance
chain by a statically known inheritance relationship to distinguish it with
the run-time inheritance chain. The static inheritance chain is denoted with
dashed lines in Figure 2), then searches down the run-time inheritance chain.

2. In each mixin definition in the run-time inheritance chain, the method lookup
searches a method with the same name and the same formal parameter types
as the invoked method.

In Figure 2, it finds that A has a definition of void m().

3. If the found method intentionally overrides the superclass’s method i.e. a
method with the same name and the same formal parameter types is declared
in the requires clause, the search goes down further to follow the longest
possible chain of intentional overriding. If the method is not declared in the
requires clause, this is an accidental overriding so the down search stops and
the last matched method encountered before reaching the mixin that hides the
method is executed.

In Figure 2, A does not require a method void m(); therefore, the resolved
method is B.m().

100 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

3 SOLVING THE PROBLEM BY USING SELECTIVE METHOD COMBINATION

Figure 2: New method lookup in McJava

4. The method lookup then searches the superclass’s method called on super.
This search goes up on the run-time inheritance chain until it reaches the
starting point (B in Figure 2). After reaching the starting point, the search
then goes up the next mixin of static inheritance chain, and searches down the
run-time inheritance chain again.

In Figure 2, super.m() is called during the execution of B.m(). The method
lookup then searches down the run-time inheritance chain from mixin D.

5. The method lookup iterates the searching process 1 through 4 until no com-
bined methods are left.

In Figure 2, the method lookup finds that C has a definition of void m();
however, C does not import a method void m(). Therefore, the method call
super.m() in B.m() results in the execution of D.m(). During the execution
of D.m(), super.m() is called, which results in the execution of E.m().

So far, the executed methods in Figure 2 are B.m(), D.m() and E.m(). In other
words, the method combination from A.m(), B.m(), C.m(), D.m() and E.m() with
a static scope B::D is [B.m(), D.m(), E.m()].

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 101

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

Syntax:

T ::= X̄| X̄ :: Object
LX ::= mixin X requires I

{T̄ f̄; KX M̄}
LI ::= interface I { M̄I; }

KX ::= X(T̄ f̄){ this.f̄=f̄;}
M ::= T m(T̄ x̄){ return e;}
MI ::= T m(T̄ x̄)

e ::= x | e.f | e.m<T̄>(ē)
| (new X̄ ::Object(ē), T)
| super[this].m<T̄>(ē)

v (new X̄ :: Object(v̄), T)

Subtype relation:

T <: T (S-REFL)

X̄ :: X :: Ȳ <: X̄ :: Ȳ
(S-COMP)

T <: S S <: U

T <: U
(S-TRANS)

Figure 3: Syntax and subtype relation

Note that if the pure-Java semantics of method lookup is applied, the executed
method is A.m().

4 FORMALIZATION

We have roughly sketched how the mechanism of selective method combination
works. In this section, we propose a formal model of method combination of mixin-
based subtyping to obtain concrete understanding of the proposed mechanism.

This formalization is based on Core McJava[10], a core language of McJava, that
is an extension of FJ[8]. To focus on just a few key constructs of McJava type
system, Core McJava provides tiny subset of McJava but captures key features of
McJava such as mixin declarations, mixin composition, and mixin-based subtyping.
The method combination mechanism introduced in this work depends on the super

invocation and preservation of static type of receiver at run-time that are not in-
cluded in Core McJava; therefore, this extension should include these features. We
start with showing how the calculus extends the syntax of Core McJava.

Syntax.

The abstract syntax of the proposed calculus is given in Figure 3. In this paper, the
metavariables d and e range over expressions; v and u range over values; KX ranges
over constructor declarations; m ranges over method names; M ranges over method
declarations; X and Y range over mixin names; R, S, T , and U range over types; I
ranges over interfaces; x and y range over variables; f and g range over field names.

As in Core McJava, we assume that the set of variables includes the special
variable this, which is considered to be implicitly bound in every method declara-

102 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

4 FORMALIZATION

tion. A method invocation expression is annotated with the static types T̄ of m’s
arguments, written e0.m<T̄>(ē), which means this calculus provides method over-
loading. Method invocation on super is new; this feature is added to the calculus
because it is crucial for the problem we are studying. This super invocation con-
tains a variable this to hold the receiver of method invocation at run-time. Another
change from Core McJava is, to preserve the static type of objects at run-time, the
new expression is annotated with a static type T . This static type controls where
the method lookup starts and may change while a reduction proceeds. We abbre-
viate (new X̄ :: Object(ē), X̄ :: Object) as new X̄ :: Object(ē). In this calculus,
class declarations are missing from the syntax, because in this paper we concentrate
on understanding of the selective method combination mechanism in mixin-based
subtyping.

We write f̄ as a shorthand for a possibly empty sequence f1, · · · , fn and write
M̄ as a shorthand for M1 · · ·Mn. The length of a sequence x̄ is written as #(x̄).
Empty sequences are denoted by ·. Similarly, we write “T̄ f̄” as a shorthand for
“T1 f1, · · · , Tn fn”; “T̄ f̄;” as a shorthand for “T1 f1; · · ·Tn fn;”; “this.f̄ = f̄;”
as a shorthand for “this.f1 = f1; · · · this.fn = fn;”; X̄ as a shorthand for X1 ::
· · · :: Xn.

As mentioned above, there are no class declarations; therefore, we have only one
class, Object, that is built-in the calculus. In this calculus, there are two kinds of
types: X̄ and X̄ :: Object. The latter is a result of composing mixins (possibly
empty sequence) and the class Object. Only the latter can be instantiated by using
new.

We write T <: U when T is a subtype of U . Subtype relations among compo-
sitions are defined in Figure 3, i.e., subtyping is a reflexive and transitive relation of
the immediate subclass relation given by the composition subtyping rule.

Mixin table.

In this calculus, a program is a pair of (CT, e) of a mixin table XT and an expression
e. A mixin table is a map from mixin names to mixin declarations. The expression
e may be considered as the main method of the “real” McJava program. The mixin
table is assumed to satisfy the following conditions: (1) XT (X) = mixin X ...

for every X ∈ dom(XT); (2)Object 6∈ dom(XT); (3) T ∈ dom(XT) for every mixin
name appearing in the definition of any mixin in the table.

In the induction hypothesis, we abbreviate CT (X) = mixin X ... as mixin

X

Auxiliary functions.

For the typing and reduction rules, we need a few auxiliary definitions, given in
Figure 4, 5 and 6.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 103

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

fields(Object) = ·

mixin X requires I {T̄ f̄; KX M̄}
fields(X) = T̄ f̄

fields(X) = T̄ f̄ fields(T) = S̄ ḡ

fields(X :: T) = S̄ ḡ, T̄ f̄

fields(T) = T̄ f̄

ftype(fi, T) = Ti

Figure 4: Field lookup

mtype(m, T̄ , Object) = nil

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mtype(m, S̄, X) = S

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mtype(m, S̄, X) = mtype(m, S̄, I)

interface I {M̄I;} T m(T̄ x̄) ∈ M̄I

mtype(m, T̄ , I) = T

interface I {M̄I;} T m(T̄ x̄) 6∈ M̄I

mtype(m, T̄ , I) = nil

mtype(m, T̄ , X) = T

mtype(m, T̄ , X :: T0) = T

mtype(m, T̄ , X) = nil

mtype(m, T̄ , T0) = T

mtype(m, T̄ , X :: T0) = T

Figure 5: Method type lookup

The fields of type T , given in Figure 4, written fields(T), is a sequence T̄ f̄
pairing the type of each field with its name. If T is a mixin, fields(T) is a sequence
for all the fields declared in that mixin. If T is a composition, fields(T) is a sequence
for all the fields declared in all of its constituent mixins. For the field lookup, we
also have the definition of ftype(fi, T) that is a type of field fi declared in T . Mixin
composition rules described later will prevent field hiding.

The return type of method m declared in type T with argument types T̄ is given
by mtype(m, T̄ , T). The function mtype is defined in Figure 5 by S that is a result
type. If m with argument types T̄ is not found in T , we define it nil. If T is
a composition, the left operand of :: is searched first. The type of method m in
interface I is also defined in the same way.

The body of method m declared in type T with argument types T̄ , given in
Figure 6, written mbody(m, T̄ , T, S), where m is a method name, T̄ are argument
types, T is the run-time type of receiver, S is the statically known type of receiver,
is a triad, written (x̄, e, X), of a sequence of parameters x̄, an expression e, and
a mixin X where the resolved method is declared. The auxiliary function mbody
formalizes the method lookup protocol roughly sketched in Figure 2. The first two
rules assume that the leftmost m<T̄> is selected when there are multiple candidates

104 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

4 FORMALIZATION

mbody(m, T̄ , X̄ :: X, X) = (x̄, e, Y)
mbody(m, T̄ , X̄ :: X :: T,X[:: S]) = (x̄, e, Y)

mbody(m, T̄ , X̄ :: X, X) = nil
mbody(m, T̄ , T, S) = (x̄, e, Y)

mbody(m, T̄ , X̄ :: X :: T,X :: S) = (x̄, e, Y)

↓ mbody(m, T̄ , X̄) = (x̄, e, Y)
mbody(m, T̄ , X̄ :: X, X) = (x̄, e, Y)

↓ mbody(m, T̄ , X̄) = nil
mixin X requires I {T̄ f̄; KX M̄}

U m(T̄ x̄){ return e; } ∈ M̄

mbody(m, T̄ , X̄ :: X[:: T], X) = (x̄, e,X)

↓ mbody(m, T̄ , X̄) = nil
mixin X requires I {T̄ f̄; KX M̄}

U m(T̄ x̄){ return e; } 6∈ M̄

mbody(m, T̄ , X̄ :: X, X) = nil

↓ mbody(m, T̄ , X̄) = nil
mixin X requires I {T̄ f̄; KX M̄}

U m(T̄ x̄){ return e; } 6∈ M̄
↑ mbody(m, T̄ , T) = (x̄, e, Y)

mbody(m, T̄ , X̄ :: X :: T,X) = (x̄, e, Y)

mixin X requires I {T̄ f̄; KX M̄}
U m(T̄ x̄){ return e; } ∈ M̄

U m(T̄ x̄) ∈ I ↓ mbody(m, T̄ , X̄) = nil

↓ mbody(m, T̄ , X̄ :: X) = (x̄, e,X)

mixin X requires I {T̄ f̄; KX M̄}
U m(T̄ ȳ){ return d; } ∈ M̄

U m(T̄ ȳ) ∈ I
↓ mbody(m, T̄ , X̄) = (x̄, e, Y)

↓ mbody(m, T̄ , X̄ :: X) = (x̄, e,X)

mixin X requires I {T̄ f̄; KX M̄}
U m(T̄ x̄){ return e; } ∈ M̄

U m(T̄ x̄) 6∈ I

↓ mbody(m, T̄ , X̄ :: X) = nil

mixin X requires I {T̄ f̄; KX M̄}
U m(T̄ x̄){ return e; } 6∈ M̄

↓ mbody(m, T̄ , X̄) = •
where • = (x̄, e, Y) or nil

↓ mbody(m, T̄ , X̄ :: X) = (x̄, e, Y)

mixin X requires I {T̄ f̄; KX M̄}
U m(T̄ x̄){ return e; } 6∈ M̄

↑ mbody(m, T̄ , X) = nil

mixin X requires I {T̄ f̄; KX M̄}
U m(T̄ x̄){ return e; } ∈ M̄

↑ mbody(m, T̄ , X) = (x̄, e,X)

↑ mbody(m, T̄ , X) = (x̄, e,X)
↑ mbody(m, T̄ , X :: T) = (x̄, e,X)

↑ mbody(m, T̄ , X) = nil
↑ mbody(m, T̄ , T) = (x̄, e, Y)

↑ mbody(m, T̄ , X :: T) = (x̄, e, Y)

Figure 6: Method body lookup

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 105

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

(We assume that mixin X is not used in the composition X̄. The notation X[:: T]
represents that the occurrence of composition is optional). The following three rules
trigger the subfunction ↓ mbody that formalizes the down search of the run-time
types. If ↓ mbody defines nil, which means that the down search fails, and if
method lookup on currnet mixin X also fails, the mbody function defines it nil.
The last rule of mbody is used for super calls. The first two roles of ↓ mbody assures
that intentional overriding is allowed; the third rule forbids accidental overriding.
Another subfunction ↑ mbody searches up the run-time types, as the pure Java’s
method lookup protocol does.

Typing.

The typing rules for compositions and expressions are given in Figure 7. A com-
position is well-formed if (1) there are no fields declared with the same name both
in the left component and the right component of the composition, (2) there is no
method collision, that is, if some methods are declared with the same name and
with the same argument types in the left and the right, the return type of both
methods must be the same (that is expressed by the VALIDOVERRIDE predicate
in Figure 7 corresponding to the Java rule on intentional overriding), and (3) for all
the methods declared in the interface that is required by the left mixin, the right
operand of the composition declares the methods named and typed as the same as
the interface.

An environment Γ is a finite mapping from variables to types, written x̄ : T̄ . The
typing judgment for expressions has the form Γ ` e : T , read “in the environment Γ,
expression e has type T”. The typing rules for constructor and method invocations
check that the type of each argument is a subtype of the corresponding formal
parameter. T-SUPER assures that a super invocation can be typed only when the
type of e, a receiver of the super invocation, is a subtype of enclosing mixin (as
explained above, the syntax assumes that e is this, but this is substituted with a
value while reductions proceed).

Figure 7 also shows the rules for well-formed definitions of methods and mixins.
The type of the body of a method declaration is a subtype of the declared type.
VALIDSUPER forbids super calls on objects other than the caller. A mixin is
well-formed if all the methods declared in that mixin are well-formed.

Dynamic semantics.

There are not many drastic changes in typing rules from Core McJava. We have to
change, however, the dynamic semantics in a significant way.

The reduction relation is of the form e −→ e
′
, read “expression e reduces to

expression e
′
in one step”. We write −→∗ for the reflexive and transitive closure of

−→.

106 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

4 FORMALIZATION

Auxiliary definitions:

mixin X requires I { ... }
interface(X) = I

mixin X requires I { ... M̄ }
∀(S m(T̄ x̄){...}) ∈ M̄
mtype(m, T̄ , X) = mtype(m, T̄ , T) or
mtype(m, T̄ , T) = nil

VALIDOVERRIDE(X, T)

mixin X requires I { ... }
interface I {M̄I}

If T is a composition X̄ :: Object, then
∀(U n(S̄ x̄)) ∈ M̄I

mtype(n, S̄, I) = mtype(n, S̄, T)
COMPOSITIONCOMPLETE(X, T)

If e contains super[d].m<T̄>(ē), then
d = this

VALIDSUPER(e)
Well-formed composition:

fields(X) ∩ fields(T) = ∅
VALIDOVERRIDE(X, T)

COMPOSITIONCOMPLETE(X, T)
X :: T ok

(T-COMP)

Expression typing:

Γ ` x : Γ(x) (T-VAR)

Γ ` e0 : S ftype(f, S) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : S mtype(m, S̄, S) = T
Γ ` ē : T̄ T̄ <: S̄

Γ ` e0.m<S̄>(ē) : T
(T-INVK)

fields(X̄ :: Object) = S̄ f̄ Γ ` ē : T̄
T̄ <: S̄ X̄ :: Object ok

X̄ :: Object <: T

Γ ` (new X̄ :: Object(ē), T) : T
(T-NEW)

mtype(m, S̄, interface(X)) = T Γ ` e : T0

Γ ` ē : T̄ T̄ <: S̄ T0 <: X

Γ ` super[e].m<S̄>(ē) : T
(T-SUPER)

Well-formed definitions:

x̄ : T̄ , this : X ` e0 : S0 S0 <: T0

T0 ok T̄ ok VALIDSUPER(e0)
mixin X requires I {...}

T0 m(T̄ x̄){ return e0; } OK IN X
(T-XMETHOD)

KX = X(T̄ f̄){ this.f̄=f̄;}
M̄ OK IN X T̄ ok

mixin X {T̄ f̄; KX M̄} OK
(T-MIXIN)

Figure 7: Typing rules

The reduction rules are given in Figure 8. We write [((new X̄ :: Object(ē), S)/x)T]e0

for the result of substituting x by (new X̄ :: Object(ē), T) in e0. T is the type of
variable x. Note that after this substitution, the static type associated with the
value, which is used for method body lookup, is changed from S to T 1. We write
“(v̄/x̄)T̄ ” as a shorthand for “(v1/x1)T1 , · · · , (vn/xn)Tn .”

There are three reduction rules, one for field access, one for method invocation,
and one for method invocation on super. The field access reduces to the correspond-

1The dynamic type is unchanged to handle intentional overriding.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 107

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

fields(X̄ :: Object) = T̄ f̄

(new X̄ :: Object(v̄), S).fi −→ vi

(R-FIELD)

mbody(m, T̄ , X̄ :: Object, S) = (x̄, e0, X)

(new X̄ :: Object(v̄).m<T̄>(ū)
−→ [(ū/x̄)T̄ , ((new X̄ :: Object(v̄), S)/this)X]e0

(R-INVK)

mbody(m, T̄ , S, S ′) = (x̄, e0, X)
where S ′ = super(X̄ :: Object, S)

super[(new X̄ :: Object(v̄), S)].m<T̄>(ū)
−→ [(ū/x̄)T̄ , ((new X̄ :: Object(v̄), S)/this)X]e0

(R-INVK-SUPER)

where
super(X̄ :: X :: T̄ , X) = T̄

e0 −→ e′
0

e0.f −→ e′
0.f

(RC-FIELD)

e0 −→ e′
0

e0.m<T̄>(ē) −→ e′
0m<T̄>(ē)

(RC-INVK-RECV)

ei −→ e′
i

e0.m<T̄>(v̄, ei, ē) −→ e0.m<T̄>(v̄, e′
i, ē)

(RC-INVK-ARG)

ei −→ e′
i

new X̄ :: C(v̄, ei, ē), T) −→ (new X̄ :: C(v̄, e′
i, ē), T)

(RC-NEW)

ei −→ e′
i

super[e].m<T̄>(v̄, ei, ē) −→ super[e].m<T̄>(v̄, e′
i, ē)

(RC-SUPER)

Figure 8: Operational semantics

ing argument for the constructor. Due to the stylized form of object constructors,
the constructor has one parameter for each field, in the same order as the fields are
declared. The method invocation reduces to the expression of the method body,
substituting all the parameter x̄ with the argument expressions d̄ and the special
variable this with the receiver. While the substitution, the static type of argu-
ment is replaced with the corresponding parameter type. The method invocation
on super also reduces to the method body.

108 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

4 FORMALIZATION

Properties.

The proof of type soundness is almost the same as that of Core McJava [10], except
that we should also consider the induction cases for T-SUPER and R-INVK-SUPER.

Lemma 4.1 If ftype(f, U) = T , then ftype(f, S) = T for all S <: U .

Proof. Straightforward induction on the derivation of subtype relation <: and
ftype. 2

Lemma 4.2 If mtype(m, T̄ , U) = T0, then mtype(m, T̄ , T) = T0 for all T <: U .

Proof. Straightforward induction on the derivation of subtype relation <:, mtype
and T-COMP. 2

Lemma 4.3 If Γ, x̄ : S̄ ` e : U , Γ ` d̄ : R̄ where R̄ <: S̄, then Γ ` [(d̄/x̄)T̄]e : T
for some T <: U and R̄ <: T̄ <: S̄.

Proof. By induction on the derivation of Γ, x̄ : S̄ ` e : U , Lemma 4.1 and 4.2. 2

Lemma 4.4 If Γ ` e : T where Γ does not include x, then Γ, x : U ` e : T .

Proof. Straightforward induction. 2

Lemma 4.5 If mtype(m, Ū, X̄) = U and mbody(m, Ū, R, X̄) = (x̄, e, X) where
R <: X̄, then, for some U0 with X̄ <: U0, there exists T <: U such that
x̄ : Ū , this : U0 ` e : T .

Proof. By induction on the derivation of mbody. 2.

Theorem 4.1 (Subject Reduction) If Γ ` e : T and e −→ e
′
, then Γ ` e

′
: T

′

for some T
′

<: T .

Proof. By induction on a derivation of e −→ e′, Lemma 4.3, 4.4 and 4.5. 2

Theorem 4.2 (Progress) Suppose e is a well-typed expression.

1. If e includes (new X̄ :: Object, S)(ē).f as a subexpression, then fields(X̄ ::
Object) = T̄ f̄ and f ∈ f̄ for some T̄ and f̄ .

2. If e includes (new X̄ :: Object, S)(ē).m<T̄>(d̄) as a subexpression, then
mbody(m, T̄ , X̄ :: Object, S) = (x̄, e0, X), ∅ ` d̄ : S̄ where S̄ <: T̄ , and
#(x̄) = #(d̄) for some x̄ and e0.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 109

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

3. If e includes super[(new X̄ :: Object, S)].m<T̄>(d̄) as a subexpression, then
mbody(m, T̄ , S, S ′) = (x̄, e0, X), ∅ ` d̄ : S̄, S ′ = super(X̄ :: Object, S) where
S̄ <: T̄ , and #(x̄) = #(d̄) for some x̄ and e0.

Proof. Immediate from well-typedness of the subexpression. 2

Theorem 4.3 (Type Soundness) If ∅ ` e : T and e −→∗ e
′

with e
′

a normal
form, then e

′
is a value v of e with ∅ ` v : U and U <: T .

Proof. Immediate from Theorem 4.1 and 4.2. 2

5 IMPLEMENTATION

We have implemented the mechanism explained above into the McJava compiler
that compiles McJava source programs into Java source programs. Java virtual
machine does not preserve static type information of run-time objects. To preserve
static type information in translated Java programs, the compiler changes the name
of methods declared in mixins and corresponding method invocations.

Figure 9 shows the translated Java code from the definitions in Figure 1 and
Id in section 2. In the following subsections, we show the compilation strategy in
detail.

Inheritance chain translation

McJava compilation strategy is explained by Kamina and Tamai in [11, 9]. At first,
McJava mixin composition is translated into Java’s class hierarchy:

1. A composition X1::· · · ::Xn::C, where each Xi (i ∈ 1 · · ·n) is a mixin and
C is a class, is translated into a class X1 · · · Xn C that implements the inter-
face X1 · · · Xn C and extends the class X2 · · · Xn C. The body of the class
X1 · · · Xn C is copied from X1. The interface X1 · · · Xn C extends all the in-
terfaces that correspond to each of X1::· · · ::Xn::C’s immediate super types.

For example, Id::Student::Employee::Person is translated into a class Id
Student Employee Person that extends a class Student Employee Person

and implements an interface Student Employee Person. The class Student
Employee Person extends a class Employee Person and implements an in-
terface Employee Person. The interface Student Employee Person extends
Student Employee, Student Person, and Employee Person.

2. All the composition types that appear in class definitions and interface def-
initions are replaced with corresponding interface names. Similarly, all the

110 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

5 IMPLEMENTATION

class Person {

String _name;

String name() { return _name; }

}

interface _Employee {

String name();

String Employee$getID();

}

interface _Employee_Person extends _Employee, _Person {}

class Employee_Person extends Person

implements _Employee_Person {

String id, title;

String name() { return title+super.name(); }

String Employee$getID() { return id; }

}

interface _Student { String Student$getID(); }

interface _Studnet_Employee_Person

extends _Student_Employee,_Student_Person,_Employee_Person

{ }

class Student_Employee_Person extends Employee_Person

implements _Student_Employee_Person {

String id;

String Student$getID() { return id; }

}

interface Id { String getID(); ...; }

interface _Id_Student_Employee_Person

extends _Id_Student_Employee, _Id_Student_Person,

_Id_Employee_Person, _Student_Employee_Person

{ }

class Id_Student_Employee_Person

extends Student_Employee_Person

implements _Id_Student_Employee_Person {

String Student$getID() {

return super.Student$getID(); }

String Employee$getID() {

return super.Employee$getID(); }

String getID() {

return super.Student$getID(); }

...

}

Figure 9: Compiled code of Figure 1 and Id (Some details are omitted for the reason
of limited space)

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 111

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

composition constructor invocations that appear in class definitions are re-
placed with corresponding class names.

For example, the statement

Id::Student::Employee p =

new Id::Student::Employee::Person();

is translated into the following statement:

_Id_Student_Employee p =

new Id_Student_Employee_Person()

Renaming strategy

To preserve the behavior of selective method combination in translated Java pro-
grams, methods are renamed while the compilation.

1. All the method names newly introduced in a mixin are prefixed by the name
of that mixin and a character $. For example, the getID() method in the
mixin Employee becomes Employee$getID(). This renaming avoids accidental
overriding.

2. The treatment of methods that intentionally override superclass’s methods is
more sophisticated. Firstly, not as in the case of accidental overriding, the com-
piler does not change the name of the method, but changes the method name of
super call to the name of the overridden method in the translated class hierar-
chy. For example, the super call inside getID() method in mixin Id becomes
Student$getID() in the translated class (Id Employee Student Person). If
there exist multiple method combinations, the compiler also inserts new meth-
ods whose names are the same as those of overridden methods, copying body
of the overriding method. For example, the method declaration getID() in
Id is also copied into the method declaration of Employee$getID() in the
translated class. Note that the name of the method in method invocation on
super is also changed appropriately.

The method name invoked externally is also changed. For example, the declara-
tion of processIdOfEmployee in section 2 becomes the following declaration:

void processIdOfEmployee(_Id_Employee e) {

String id = e.Employee$getID();

...

}

112 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

7 CONCLUDING REMARKS

6 RELATED WORK

As mentioned earlier, our approach is an extension of hygienic mixins [1, 14]. The
implementation of hygienic mixins is based on MixedJava, formalized by Flatt et al.
[5]. MixedJava uses run-time context information, called view, to determine which
method should be invoked when an accidental overriding exists. The subtyping
rules of these work do not allow an immediate superclass of a mixin in run-time
inheritance chain to be different from the statically known superclass. The selective
call of the “original” method to super is not achieved in [1, 14, 5]. Note that
MixedJava employs nominal subtyping for composition checking.

Ernst proposed the propagation mechanism of method combination in the stati-
cally typed language gbeta [4], a generalization of the language BETA [13]. gbeta

also provides similar mechanism with our approach that allows two methods with
the same signature to coexists in the same object, and to select which one of them
to call based on the statically known type of the receiver. However, BETA/gbeta
does not provide Java-style method overriding; instead it provides method argumen-
tation by INNER statements. Therefore, the result of selective method combination
in gbeta is different from our approach. Actually there is a design tradeoff; further
information about it is found in [3]. We also note that recently Goldberg et al.
propose a language that integrates super and INNER [7].

Traits [16] resolve naming conflicts (i.e. accidental overriding) by aliasing of con-
flicting methods and making the original method invisible from outside. This solu-
tion alleviates the problem only to small extent and requires other than language
features such as good refactoring tools, while our approach solves the problem purely
in language design and implementation.

Epsilon [19, 17, 18] is a role-based executable model that has a feature of dynamic
object adaptation. When an Epsilon object dynamically adapt to a role, replacing of
methods may occur. This replacing allows more flexible method combination than
the traditional method overriding where the name of overridden method is always
the same as that of overriding method. Even though McJava does not allow this
replacing, we consider the mechanism proposed in this paper provides a good basis
for incorporating similar mechanism into Epsilon.

7 CONCLUDING REMARKS

In this paper, we have proposed a new method lookup scheme of selective method
combination. This approach solves the problem of accidental overriding in mixin-
based composition. With the flexible subtyping mechanism defined in McJava, in
the case of having multiple candidates for method call to super we can select which
method to be called. The formalization promotes understanding of the proposed
system. This approach promotes flexibility of mixin-based compositions, and relia-
bility of programs because our approach makes it easier to ensure the behavior of

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 113

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

classes. Our approach can be implemented as the source code translation into Java
programs thus making it runnable on a standard Java virtual machine.

Acknowledgements: The research has been conducted under Kumiki Project,
supported as a Grant-in-Aid for Scientific Research (13224087) by the Ministry of
Education, Culture, Sports, Science and Technology (MEXT), Japan.

REFERENCES

[1] Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-class approach to
genericity. In Proceedings of OOPSLA2003, pages 96–114, 2003.

[2] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam – designing a Java
extension with mixins. ACM TOPLAS, 25(5):641–712, 2003.

[3] Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA 1990,
pages 303–311, 1990.

[4] Erik Ernst. Propagating class and method combination. In ECOOP’99, volume
1628 of LNCS, pages 67–91. Springer-Verlag, 1999.

[5] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and
mixins. In POPL 98, pages 171–183, 1998.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[7] David S. Goldberg, Robert Bruce Findler, and Matthew Flatt. Super and inner
– together at last! In OOPSLA 2004, pages 116–129, 2004.

[8] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[9] Tetsuo Kamina. A Design and Implementation of Mixin-Based Composition
in Strongly Typed Object-Oriented Languages. PhD thesis, The University of
Tokyo, 2005.

[10] Tetsuo Kamina and Tetsuo Tamai. A core calculus for
mixin-types. In Foundations on Object Oriented Lan-
guages (FOOL11), 2004. Revised version is available at
http://www.graco.c.u-tokyo.ac.jp/~kamina/papers/fool/kamina.pdf.

[11] Tetsuo Kamina and Tetsuo Tamai. McJava – a design and implementation of
Java with mixin-types. In Programming Languages and Systems: Second Asian
Symposium, APLAS 2004, Taipei, Taiwan, November 4-6, 2004, volume 3302
of LNCS, pages 398–414. Springer-Verlag, 2004.

114 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

7 CONCLUDING REMARKS

[12] Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-
Wesley, 1989.

[13] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
1993.

[14] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi: New-age compo-
nents for old-fashioned Java. In Proceedings of OOPSLA2001, pages 211–222,
2001.

[15] D. A. Moon. Object-oriented programming with flavors. In OOPSLA’86 Con-
ference Proceedings: Object-Oriented Programming: Systems, Languages, and
Applications, pages 1–8, 1986.

[16] Nathanael Schärli, Steṕhane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable units of behavior. In ECOOP 2003, LNCS 2743, pages
248–274, 2003.

[17] Tetsuo Tamai. Evolvable Programming based on Collaboration-Field and Role
Model. In International Workshop on Principles of Software Evolution (IW-
PSE’02), pages 1–5, 2002.

[18] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi Ichiyama. An adaptive object
model with dynamic role binding. In ICSE 2005, pages 166–175, 2005.

[19] Naoyasu Ubayashi and Tetsuo Tamai. Separation of Concerns in Mobile Agent
Applications. In Metalevel Architectures and Separation of Crosscutting Con-
serns – Proceedings of the 3rd International Conference (Reflection 2001), vol-
ume 2192 of LNCS, pages 89–109. Springer-Verlag, 2001.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 115

FLEXIBLE METHOD COMBINATION BASED ON MIXIN SUBTYPING

Tetsuo Kamina received his B.A. in International Christian Uni-
versity, M.A. and Ph.D. in the University of Tokyo. He became a
JST CREST researcher of Center for Tsukuba Advanced Research
Alliance (TARA), University of Tsukuba in 2005 and has been in
that position. His current research includes object-oriented language
design and implementation, software engineering, and signal pro-
cessing especially for still image processing. He can be reached at
kamina@acm.org.

Tetsuo Tamai received the B.S., M.S. and Dr.S. degrees in math-
ematical engineering from the University of Tokyo. He joined Mit-
subishi Research Institute, Inc. in April 1972 and had been the
manager of Artificial Intelligence Technologies Section from October
1985 to March 1989. He became an Associate Professor of Graduate
School of Systems Management, the University of Tsukuba in 1989.
He then became a Professor of Graduate School of Arts and Sci-
ences, the University of Tokyo in 1994 and has been in that position
ever since. His current research includes high reliability component-
based software engineering, collaboration and role modeling, formal
analysis of software architectures and software evolution process.
He has been contributing to the activities of Japan Society for Soft-
ware Science and Technology for a long time as a board member
and as the Editor-in-Chief of its journal “Computer Software.” He
served as the Program Chair of JSSST 20th anniversary conference
in September 2003. He is also on the editorial board of “Information
and Software Technology”, published by Elsevier Science. He is cur-
rently a member of the executive committee of ACM SIGSOFT as
an International Liaison. He was also a past chair of Special Inter-
est Group on Software Engineering, Information Processing Society
of Japan and a past chair of the Software Engineers Association,
Japan.
He has been sharing responsibilities of a number of international
academic conferences, including PC of ICSE’s, RE’s, ESEC/FSE’s,
ICSM’s and many others and Steering Committee of APSEC and
IWPSE.

116 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

