
An Approach for Persistent Time-Varying Values
Tetsuo Kamina
Oita University

Japan
kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology

Japan
aotani@c.titech.ac.jp

Abstract
As reactive systems, such as cyber-physical systems and the
Internet of Things, become increasingly important, time-
varying values, also known as signals, are playing an im-
portant role in software development. Although reactive
systems require the change histories of some signals to be
stored for various purposes such as post analysis and sim-
ulation, current programming languages do not provide a
way to declare that signals are persistent. This paper pro-
poses a method that realizes persistent signals in a reactive
programming language, where (1) every update to each per-
sistent signal is recorded in a time-series database, which
can be seen as a part of the programming language runtime;
and (2) persistent signals support a convenient time-oriented
query mechanism. In this approach, each signal in the reac-
tive programming language is seamlessly connected with
the time-series database. This method is implemented as
an extension of SignalJ, a Java-based reactive programming
language that supports signals. In the implementation, the
persistent signal mechanism is integrated with TimescaleDB,
a PostgreSQL-based time-series database. In preliminary per-
formance evaluations, our implementation had good respon-
siveness on most tests, indicating its feasibility for use in
many applications.

CCS Concepts • Software and its engineering → Lan-
guage features; • Information systems → Database de-
sign and models.

Keywords Signals; Reactive programming;
Time-series databases
ACM Reference Format:
Tetsuo Kamina and Tomoyuki Aotani. 2019. An Approach for Per-
sistent Time-Varying Values. In Proceedings of the 2019 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward! ’19), October

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Onward! ’19, October 23–24, 2019, Athens, Greece
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6995-4/19/10. . . $15.00
https://doi.org/10.1145/3359591.3359730

23–24, 2019, Athens, Greece. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3359591.3359730

1 Introduction
Reactive systems are becoming increasingly important, and
time-varying values, also known as signals, play an impor-
tant role in such systems. Each signal can be viewed as a data
stream with a periodically updated value. By “connecting”
signals in a functional manner, we can declaratively specify a
dataflow with inputs given by the environment and outputs
that respond to the changes in the environment. Modern
applications such as cyber-physical systems (CPS) and the
Internet of Things (IoT) are naturally represented by the use
of signals. There have been many reactive programming (RP)
languages that directly support signals [4, 7, 14, 18, 24, 29].
Reactive systems require that some signals be persistent.

For example, in a vehicle tracking system, the position of
each vehicle, the status of each traffic light, and the condition
of each street are characterized by time-varying values, and
these are also considered persistent in that the values should
be recorded on the disk to allow rewinding to any earlier
point in the execution history for inspection (e.g., inspecting
the cause of a car accident). By contrast, some time-varying
values can be computed from persistent signals (e.g., the
existence of a traffic jams) and so it is not necessary for them
to be persistent.

Unfortunately, signals in existing RP languages are not per-
sistent. Although time-traveling debuggers [21, 25] record
the execution histories of all signals in the application to
enable programmers to pause execution and rewind to any
earlier execution point, such tools are designed for debug-
ging; thus, they are not suitable for use as the application
framework that supports persistent signals. In those tools,
the change histories of all signals are implicitly stored on the
disk only when the application is running in the debugging
mode. To our knowledge, useful programming interfaces for
software development (not for debugging) that allow issuing
queries over signals whose change histories are stored on a
disk have not been considered to date.

From the viewpoint of database systems, persistent time-
varying values are closely related to time-series databases [13]
in that such databases store time-series data (i.e., change his-
tories of time-varying values). Such databases are specialized
to store time-series data that are indexed by their timestamps,
and the database system supports a convenient time-oriented

https://doi.org/10.1145/3359591.3359730
https://doi.org/10.1145/3359591.3359730

Onward! ’19, October 23–24, 2019, Athens, Greece Tetsuo Kamina and Tomoyuki Aotani

API and a compact representation of the data and time in-
dices. However, there is a significant gap between signals and
time-series data. Database languages adopt a computation
model that is quite different from the model used to com-
pute the values of the signals. For example, recomputation
and update propagation are rarely considered in database
languages. Furthermore, there is a significant mismatch be-
tween how to handle time; while signals handle logical time,
time-series data are typically related to real time.
Our goal in the study described here is to provide a pro-

gramming interface in which a persistent time-series data
mechanism is fully integrated with signals. We call such
signals persistent signals. Persistent signals have the same
capabilities as non-persistent signals; i.e., they can be con-
nected with other signals to represent a dataflow and can
be updated by means of update propagations. Internally, ev-
ery update to a persistent signal is recorded in the database,
which can be seen as a part of the proposed programming
language runtime. Each persistent signal supports a query
mechanism, which is represented using the RP language API,
to inspect the value of the signal at any earlier execution
point. The programmers need not explicitly consider the
database. The database schema is automatically generated
from the source code and modified, if necessary, when the
source code is modified.
To study the feasibility of this goal, we extended Sig-

nalJ [14], a Java-based RP language that supports signals,
to realize persistent signals. Its language runtime is also ex-
tended to provide a wrapper for the time-series database so
as to realize a natural API for queries over persistent sig-
nals. This wrapper is implemented using TimescaleDB1, an
open-source time-series database based on PostgreSQL. The
wrapper manages the conversions from the API to queries in
the database language, including the mapping from logical
time to real time. In this setting, we conducted a series of
preliminary performance evaluations, which shows that our
implementation is responsive on most tasks, indicating its
feasibility for use in many applications.
The rest of this paper is structured as follows. Section 2

introduces SignalJ. Section 3 gives the motivation for this
proposal, using the example of a vehicle-tracking system.
Section 4 gives the design for extending SignalJ to handle
persistent signals and the API of the extension. Section 5
explains the details of how this proposal is implemented. Sec-
tion 6 shows the results of preliminary evaluations. Section 7
discusses related work, and Section 8 concludes this paper
and presents some directions for future work.

2 Signals in SignalJ
RP is a programming approach in which change propaga-
tions through time-varying values, each of which constitutes
a data stream with its own periodically updated value, are

1https://www.timescale.com

declaratively specified. A time-varying value, also known as
a signal, can be handled using a function. For example, as-
suming that the power difference of an actuator is calculated
by the function f that takes a sensor value as input, both the
power difference and the sensor value can be represented as
signals, powerDifference and sensorValue, respectively,
and the relationship between them can be simply represented
by the following declaration.

powerDifference = f(sensorValue)

This declaration specifies that every update of sensorValue
results in a recalculation of powerDifference. This mecha-
nism is present in by several functional-reactive program-
ming languages and directives such as Fran [7], FrTime [4],
and Flapjax [18].
Recently, this mechanism has been included in imper-

ative object-oriented languages such as REScala [24] and
SignalJ [14] where imperative updating of signals is allowed.
In SignalJ, a signal is declared using the modifier signal. For
example, the following code fragment declares two signals,
a and b, where b depends on a.

signal int a = 5;

signal int b = a + 3;

a++;

System.out.println(b); // displays 9

We refer to a signal that depends on other signals as a com-
posite signal (a signal depends on all signals that appear on
the right-hand side of the initialization (=) of the signal, and
this dependency is transitive). This means that, when the
value of a is updated, this update is propagated to b, result-
ing in the value of b being updated. Thus, the value of b in
the above code fragment is initially 8, but if the value of a is
updated by a++, the value of b becomes 9.

This dependency between a and b is fixed for the duration
of execution. This means that any reassignment of a value to
b is not allowed in SignalJ: the value of b can be updated only
through updating a. On the other hand, a does not depend
on any other signal. We refer to this signal as a source signal,
which can be imperatively updated (as performed by a++).

A notable feature of SignalJ is how it distinguishes signals
from non-signals. In SignalJ, variables that have the modifier
signal are signals; those that do not use it are not signals.
The types signal int and int are the same base type, which
means a signal can be used anywhere that a non-signal is
expected. This approach is especially useful for creating a
dependency network of signals using legacy Java libraries.
For example, the following code fragment counts the number
of 1-bits in the 2’s complement representation of the signal
a:

signal int a = 0;

signal int count = Integer.bitCount(a);

https://www.timescale.com

An Approach for Persistent Time-Varying Values Onward! ’19, October 23–24, 2019, Athens, Greece

The method bitCount is provided by the Java standard li-
brary. It takes an int value as an argument and returns an
int value. Because a can be used wherever an int value is
expected, it can be provided as the argument to bitCount.
Because count is declared as a signal, when a is updated,
bitCount is automatically recomputed to update count. In
other words, the signal dependency is determined from the
lexical scope of the signal declaration.

SignalJ also supports an event mechanism, where an event
is an update of a signal; that is, we can implement an event
handler that responds to an update of a signal. This event
handler is a lambda expression (or method reference) that is
passed to the subscribe operator of the signal. The follow-
ing code fragment shows an example.

signal int a = 5;

a.subscribe(e -> System.out.println(e));

a++; // displays 6

The handler is called whenever the signal is updated. Thus,
the lambda expression passed to subscribe is called at the
subsequent a++, and the value of a, which is now 6, is dis-
played. This event mechanism is useful for representing the
side-effects of signal updates (e.g., actuating a motor), which
is commonwhen implementing IoT applications using legacy
libraries.

3 Making Signals Persistent
Signals directly represent dataflows from inputs given by the
environment to outputs that respond to the changes in the
environment. This feature is useful in implementing modern
reactive software such as CPS and IoT applications.
However, one important building block is still missing

in existing RP languages: storing the values of signals in
the database according to time. We explain this using the
example of a vehicle tracking system. This system records the
position of each vehicle, which is obtained from automotive
devices. The position changes while the vehicle is moving;
thus, it is a time-varying value. There are also some other
time-varying values that depend on the position, such as
the estimated velocity and the total traveled distance of that
vehicle. These dependencies on time-varying valuesmotivate
us to develop a system to handle them using an RP language.

This vehicle tracking system also allows for post analysis
(e.g., inspecting the cause of a car accident) and simulation.
To accomplish this, the change history of each position of
the vehicle is stored in the database. There are several time-
series databases that are useful for this purpose, such as
OpenTSDB2, InfluxDB3, and TimescaleDB. These databases
are specialized to store time-series data. Such database sys-
tems typically provide a compact representation and conve-
nient time-oriented API for time-series data.
2http://opentsdb.net
3https://www.influxdata.com

However, these database systems are not easily interopera-
ble with RP languages, and it is still unclear how to transpar-
ently use such time-series data from signal networks in an
RP language. The database languages assume a computation
model that is quite different from how the signals are com-
puted. For example, recomputation and update propagation
are rarely considered in database languages. Programmers
must manually bridge this gap (e.g., by means such as event
mechanisms).

There is also a significant mismatch between how time is
handled in the databases and in the RP language. Basically,
time-series databases handle the real time. For example, val-
ues may be monitored by several distinct sensors operating
in parallel, and the values are stored in the database with
their timestamps. Because of delays caused by serializing
these disk accesses, the timestamps of two simultaneous
writing can be distinct. However, we consider such values to
have been observed at the same time, and the signals in the
RP language should reflect this fact. In other words, signals
handle logical time
This paper proposes a mechanism of persistent signals,

where the time-series data is transparently perceived through
the signals. To achieve transparency between the program-
ming language interface and the underlying database, the
following features are provided.
• A persistent signal is declared as a variant of signals
that encapsulates details of the underlying database.
All queries of the database are performed through the
API, and programmers do not have to know what in-
ternal queries are issued to the underlying database.
• Internally, each update to the persistent signal is as-
signed a serial number that corresponds to the logical
time, along with the provided timestamp. The times-
tamp is used to execute time-oriented queries, and
the serial number is used to identify which updates
occured at the same time.

Additionally, we include the following features to ensure
that the proposed mechanism fits well with the signal mech-
anism of SignalJ.
• Each persistent signal is compatiblewith a non-persistent
signal; that is, a persistent signal can appear in any
place where a non-persistent signal is expected, and
any operations available for a non-persistent signal are
also available for a persistent one. In addition, some
specific operations are provided for persistent signals
(such as queries over the update histories).
• Composite signals that depend on persistent source
signals are not necessarily stored on the disk. This is
because the composite signals are recomputed using
the source signals. For example, the update history of
the velocity of the vehicle is not necessarily stored as
time-series data because this can be calculated from
the update history of the position of the vehicle.

http://opentsdb.net
https://www.influxdata.com

Onward! ’19, October 23–24, 2019, Athens, Greece Tetsuo Kamina and Tomoyuki Aotani

4 Language Design
To realize persistent signals, we extend SignalJ. In addition
to signals, this extension provides two language features:
(1) a signal can be declared as a persistent signal explicitly;
and (2) several time-oriented operations are provided for
persistent signals. Syntactically, this extension adds only two
modifiers, persistent and nonpersistent, which indicate
the signal is persistent or non-persistent, respectively. Other
language features are achieved by providing an API to handle
persistent signals and their time-oriented operations. This
API is summarized in Table 1.

4.1 Persistent Signals
A persistent signal is a signal whose update history is recorded
in the database. A signal is declared as a persistent signal
using the modifier persistent. In the following example,
car1234_x and car1234_y are declared as persistent signals
whose time-varying values are of type int.

persistent signal int car1234_x, car1234_y;

signal int dx = car1234_x.lastDiff(1);

signal int dy = car1234_y.lastDiff(1);

signal int v = dx.distance(dy);

The declaration of a persistent signal binds the declared sig-
nal with a corresponding database component, such as a
table in an RDB. In the above example, these persistent sig-
nals represent the position of a specific vehicle: car1234_x
represents the x-coordinate and car1234_y represents the
y-coordinate.
While the above vehicle is moving, the values of the per-

sistent signals are updated using the values obtained from
automotive devices. The signal v in the above code fragment
represents the estimated velocity of the vehicle, which is
recalculated each time the position of the vehicle changes.
The method lastDiff returns the difference between the
current value and the last value of the receiver signal (if
its execution history is empty or only one record has been
stored in the history, this method returns a default value; in
this case, 0 is used). When both car1234_x and car1234_y
are updated, the results of lastDiff, that are, dx and dy,
respectively, are also updated. Thus, both dx and dy are also
declared as signals. Assuming that these signals are updated
periodically, the velocity v of the vehicle can be determined
by calculating the distance expressed by dx and dy. Because
v is also a time-varying value, it is also declared as a signal
that depends on dx and dy.

We note that the signals dx, dy, and v depend on the per-
sistent signals. This means that even though they are not
declared with persistent, their execution histories can be
derived from the source persistent signals. We call such sig-
nals as view signals. In our language, some methods of per-
sistent signals exist for view signals also (Table 1). Our com-
piler implicitly infers whether the declared signal is a view

signal by traversing the right-hand side of the signal declara-
tions. To disable this inference for a specific signal, we need
to declare that signal using the modifier nonpersistent.
Currently, only signals that depend on persistent signals
and signals that do not depend on any other signals (except
nonpersistent signals) can be declared as nonpersistent.
One issue that we need to consider is that these coordi-

nates represent positions that are monitored simultaneously.
Because the updates of signals may occur independently,
these updates can occur at different real times, and thus it is
necessary to let the language runtime know that the update
time of these signals should be considered the same. Our lan-
guage considers the updates of persistent signals declared in
parallel (e.g., car1234_x and car1234_y in the above exam-
ple) to occur simultaneously. For example, the following loop
updates both car1234_x and car1234_y periodically, and
our language treats the two assignments below as occurring
simultaneously.

while (true) {

car1234_x = getPosition().x;

car1234_y = getPosition().y;

Thread.sleep(5000);

}

It is the programmer’s responsibility to ensure that both
car1234_x and car1234_y are updated only in the same
loop. This means that simultaneous updates of car1234_x
and car1234_y always share the same logical time. To ensure
this property, it is preferable to localize such updates in a
single module; e.g., the Timer class provided by SignalJ can
be used for this purpose. More advanced language constructs
to ensure that “both assignments occur simultaneously,” such
as parallel assignment (like || for parallel execution) can also
be considered. To avoid introducing a new syntax specific
to persistent signals, we introduced a new API method that
makes the programmer’s intention clearer, as shown here.

while (true) {

car1234_x.set(getPosition().x).

sync(car1234_y).set(getPosition().y);

Thread.sleep(5000);

}

4.2 Time-Oriented Operations
Several query methods on persistent signals are defined.
Those are grouped into three categories: basic selections,
analytic queries, and domain specific queries.

4.2.1 Basic Selections
A basic selection filters a given persistent signal using a
time condition; thus, the result of this operation is another
signal that contains the time-series values that match with
the specified time condition. This is similar to existing filter

An Approach for Persistent Time-Varying Values Onward! ’19, October 23–24, 2019, Athens, Greece

Table 1. Persistent signal API (selective). In this table, we use T as a type parameter. For example, signal[T] is a type T whose
modifier includes signal.

Type Signature Return
type Description

Basic
within(java.sql.Timestamp ts,
String interval)

signal[T] Time-series data within the extent specified by a time-
stamp ts and an interval representing its interval

bucket(String interval) signal[T] Time-series data using the sampling rate specified by
interval

Analytic

first() T First value of the receiver signal
count() int Number of records of the receiver signal
sum() T Summation of records of the receiver signal
avg() T Average of records of the receiver signal
max() T Maximum value among records of the receiver signal
min() T Minimum value among records of the receiver signal
histogram(T min, T max,
int buckets)

T[] Histogram of the receiver signal with buckets of num.
buckets defined over the range from min to max

Domain
specific

lastDiff(int i) T
Difference between the current value of the receiver
signal and the ith value since the last value of that
signal

distance(signal[T] s) T Distance between the receiver signal and s

Figure 1. Selecting time-series data within the past 12 hours

functions for signals and reactive streams. The difference is
that our basic selectionmechanisms provide the results based
on time conditions. For example, to obtain all car1234_x’s
values that have been recorded within the past 12 hours, we
can use the within method (Figure 1).

signal int c12x =

car1234_x.within(Timeseries.now, "12 hours");

This method takes two arguments: an instance of java.sql
.Timestamp and a String value, which represents a time
interval. Timeseries is a built-in class that contains useful
information for time-oriented queries. For example, the field
now holds an instance representing the “current time.”4 The
within method returns a sequence of car1234_x’s time-
series values restricted to only within the past 12 hours.
Thus, the result of within is also a signal, and by accessing

4The field now holds the signal of java.sql.Timestamp, which means that
this field returns the time at which it is accessed. Thus, c12x always holds
the time-series data that have appeared in the past 12 hours prior to “now”.
If we need to creates a “fixed” time extent, we can use a non-signal instance
of java.sql.Timestamp.

Figure 2. Changing sampling rate of time-series data

this signal (called c12x here), we can obtain the latest value
of the sequence. We can additionally obtain the first value
of the sequence using the first method.

int c12xfirst = c12x.first();

It may also be useful to obtain the time-series data with a
coarser sampling rate. The bucket method is provided for
this purpose (Figure 2). This method returns the time-series
data using the sampling rate specified by the argument. For
example, the following code results in two sequences of time-
series x-coordinates and y-coordinates, respectively, for the
above vehicle, sampled at a rate of every 5 minutes.

signal int car1234x5min =

car1234_x.bucket("5 minutes");

signal int car1234y5min =

car1234_y.bucket("5 minutes");

These time-oriented selection methods are applicable to any
persistent signals, and the result should be considered a time-
series data. Thus, we can chain these operations as follows:

Onward! ’19, October 23–24, 2019, Athens, Greece Tetsuo Kamina and Tomoyuki Aotani

car1234_x.within(ts, "12 hours")

.bucket("5 minutes");

This example results in a sequence of car1234_x’s time-
series values limited to only those within the past 12 hours
and sampled only every 5 minutes.

4.2.2 Analytic Queries
Persistent signals also support basic analytic queries such
as count (the number of time-series values in the specified
persistent signal), median (the median of the time-series
values), avg (the average of the time-series values), sum (the
sum of the time-series values), max (the maximum among the
time-series values), and min (the minimum among the time-
series values). Basically, those analytic functions return a
non-signal value, but by declaring the return value as a signal,
these results can also be handled as a signal. For example,
the following signal count holds the number of c12x’s time-
series values, which varies when c12x is updated:
signal int count = c12x.count();

The result of analytic queries can also be a compound
value. For example, the following histogrammethod returns
a histogram of the receiver signal with eight buckets defined
over the range from 10 to 90.
signal int[] h = c12x.histogram(10,90,8)

This histogram is represented as an array with ten buckets
(including two more buckets other than the buckets specified
in the argument for the histogram method: a bucket for
values below the minimum threshold, and another for values
above the maximum threshold). Because c12x is a signal and
this histogram h is also declared as a signal, its value also
changes over time.

4.2.3 Domain Specific Queries
Our language also supports a query API that is specific to
some application domains. Our language processor consists
of a compiler and a runtime library, and, as explained in
Section 5, this runtime library is extensible, allowing it to be
replaced with a library that supports a query API adapted to
specific domains. This paper focuses on the domain of vehicle
tracking. For example, in Table 1, lastDiff and distance
are domain specific query methods that are designed for the
vehicle tracking system.

Analytic queries can be applied to the view signals that
are obtained by the domain specific queries. For example, in
the following code fragment, max is called on v12, which is
obtained by a call chain of domain specific queries.
signal int c12x =

car1234_x.within(Timeseries.now, "12 hours");

signal int c12y =

car1234_y.within(Timeseries.now, "12 hours");

signal int dx12 = c12x.lastDiff(1);

signal int dy12 = c12y.lastDiff(1);

signal int v12 = dx12.distance(dy12);

signal int v12max = v12.max();

How the domain specific queries are introduced is explained
in Section 5.

4.2.4 Current Limitations
Because this work is in its early stage, the mechanism pro-
posed here provides only preliminary features. Even though
these features cover most basic features of existing time-
series databases (such as TimescaleDB), it is preferable to
extend the proposal to equip it with more convenient func-
tions. For example, our proposal limits the base types of
persistent signals to be primitives. This limitation makes it
easy to implement the proposal and perform the feasibility
study. However, in SignalJ, the underlying type of a signal
can be any type allowed in Java, including reference types,
and the ability to make such signals persistent would be
helpful for programmers. We consider that a standard OR
mapping mechanism may be suitable for allowing a com-
pound type be treated as a persistent signal. Another possi-
ble extension will be designing language integrated queries
based on persistent signals. Such queries are typically formed
using a fluent API [9], and our API is also based on this idea.
By enriching such API functions, we may construct more
convenient queries.

5 Implementation
This section explains how the proposed mechanism is im-
plemented using an existing time-series database system. To
record all updates of persistent signals in the dedicated data-
base system, we need to define mappings from the persistent
signals to database instances. The fundamental policies of
this mapping are as listed here.

• Each persistent signal is mapped into a key-value table,
where the key is a timestamp indicating the time of
the update, and the value contains the value of the
signal at that time. The timestamp should be indexed
according to the specific indexing mechanism used in
the time-series database.
• Operations performed on a persistent signal are trans-
lated into the corresponding queries on the table that
is mapped from the persistent signal.
• Each view signal is mapped to a view that uses the
tables mapped from the persistent signals on which
the view signal depends. Operations on view signals
are translated into queries on the corresponding view.
• These mappings are kept consistent while the source
code is evolving. A synchronization mechanism is pro-
vided to make the database schema consistent with the
declarations of persistent signals in the source code.

An Approach for Persistent Time-Varying Values Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 3. Mapping a persistent signal to an RDB table

• Because there are several time-series databases target-
ing different use case scenarios, it should be easy to
replace the underlying DBMS with another one.

To achieve the last requirement, persistent signals are im-
plemented based on the runtime library that contains the
interface, namely, PersistentSignal, which provides the
functionality to query the database. A concrete class imple-
menting that interface provides the DBMS-specific mapping
from the persistent signals into database instances. The run-
time library is also responsible for providing domain specific
queries.

This section presents an implementation based on TimescaleDB,
a PostgreSQL-based time-series database. The reason that
we use TimescaleDB as the backend for persistent signals
is that it allows using the full power of SQL expressiveness
in a way that makes it straightforward to implement the
aforementioned mapping. Nevertheless, it is still an open
question whether using TimescaleDB is the best solution
among the currently available time-series databases. We will
come back to this issue in Sections 6 and 7.

5.1 Key-Value Tables for Signals
Each persistent signal is implemented using a table that
contains at least columns, namely, time and value, where
time is the timestamp indicated when the update of the
signal occurred and value is the value of the signal at that
time.
Each signal also associates a serial number with each

record. Figure 3 shows the mapping from a persistent sig-
nal to an RDB table. The name of the table is determined
by concatenating the name of the signal and the qualified
name of the class that declares the signal. The column value
records every value held by that signal. Besides the times-
tamp, the column id (the serial number) is also used as a
key of the table. For example, the table for car1234_x in the
above example is created by the following CREATE TABLE
statement (in the following, we omit the qualified class name
for simplicity).
CREATE TABLE car1234_x (

id SERIAL,

time TIMESTAMPTZ NOT NULL,

value INTEGER NOT NULL

);

The difference between time and id is that, time is used
to perform time-oriented queries as explained below, and id
is used to identify records that were inserted at the logically
same time. For example, in the vehicle tracking system ex-
plained in Section 4, updates to car1234_x and car1234_y
occur simultaneously, but this fact is possibly not reflected
by time. Thus, to perform queries on views that are derived
from the tables (e.g., obtaining the velocity of the vehicle), we
need to perform the natural-join of both tables by matching
rows according to serial number.

The above table records time-series data, which have the
following features.
• Each entry has a timestamp.
• Once inserted, entries are not normally updated.
• Recent entries are more likely to be queried at a fine-
grained sampling rate (i.e., time interval)

To effectively interact with such time-series data, TimescaleDB
provides an abstraction of a single continuous table across
all space and time intervals; this is called a hypertable. All
interactions with TimescaleDB (such as SQL queries) are
implicitly with hypertables. A hypertable is created using
the following create_hypertable function, which follows
the CREATE TABLE statement.

SELECT create_hypertable('car1234_x', 'time');

The CREATE TABLE and create_hypertable statements,
as well as the CREATE VIEW statements explained below, are
not embedded in the bytecode generated by the compiler
but are extracted as a separate SQL script. One issue is the
execution timing of this script. We will return to this issue
in Section 5.5.

5.2 Implementing Signal Operations using Database
Queries

In the following sections, we explain how each access to a
persistent signal is translated to the corresponding query
for the database on a case-by-case basis. The first case is the
update of a persistent signal using an assignment expression;
for example, the following assignment inserts a new value
to the corresponding table.

car1234_x = 88;

This assignment is translated to the following INSERT INTO
statement, which inserts the pair of current timestamp and
the assigned value (88 in this case) into the table representing
the left-hand side of the assignment5:

INSERT INTO car1234_x(time, value)

VALUES (NOW(), 88);

5To be precise, the compiler translates the assignment into a call to the
runtime library method that executes the INSERT INTO statement. In the
following, we explain the implementation on the basis of mapping to SQL
statements for simplicity.

Onward! ’19, October 23–24, 2019, Athens, Greece Tetsuo Kamina and Tomoyuki Aotani

This statement also implicitly generates a new serial number,
which is stored in the id column of the new record.

Each access to a persistent signal yields the most recent
value of that signal, which can be implemented by the fol-
lowing SELECT statement.

SELECT value FROM car1234_x ORDER BY time

DESC LIMIT 1;

Actually, in SignalJ, the latest value is always cached in the
object representing the signal, making a query unnecessary.
In our implementation, this cache is always updated when a
new value is inserted into the table. Thus, it is not necessary
to issue the above query to obtain the latest value.
Time-oriented operations on persistent signals are im-

plemented using the corresponding time-oriented queries
provided by TimescaleDB. The following call of the within
method is an example.

car1234_x.within(Timeseries.now, "12 hours");

This call is translated into the following SELECT statement.

SELECT * FROM car1234_x

WHERE time > NOW() - interval '12 hours';

In TimescaleDB, time-series data can be queried using the
standard SELECT statement. This statement selects car1234_x’s
records that were inserted within the last 12 hours. The key-
word interval is used to obtain the time extent represented
using the timestamps. NOW() is equivalent to Timeseries.now,
which always holds the current time. Thus, the result is also
changing as time goes on.
One common case to use within is when we declare a

view signal, such as c12x.

signal int c12x =

car1234_x.within(Timeseries.now, "12 hours");

A declaration of a view signal is translated into a CREATE
VIEW statement (that is extracted into the separate SQL script).
Thus, in this case, the compiler generates the following
CREATE VIEW statement.

CREATE VIEW c12 AS

SELECT * FROM car1234_x

WHERE time > NOW() - interval '12 hours';

We note that, as the value of NOW() is time-varying, this view
also changes as time goes on.
Another example is creating a time bucket that contains

the time-series data at a different sampling rate. The follow-
ing signal records the update history of car1234_x using a
5-minute interval.

signal int car1234x5min =

car1234_x.bucket("5 minutes");

This signal is implemented by the following CREATE VIEW
statement using the time_bucket function of TimescaleDB.

CREATE VIEW car1234x5min AS

SELECT DISTINCT

id,

time_bucket('5 minutes', time) AS time,

last(value,time)

FROM car1234_x

GROUP BY time;

The time_bucket function truncates the timestamps using
arbitrary time intervals. The last function, which is also
provided by the TimescaleDB API, returns the latest value
within the aggregated group.

Finally, analytic queries on the persistent (and view) sig-
nals are simply implemented using the analytic queries pro-
vided by SQL. For example, the expression car1234_x.count()
is implemented using the following SELECT statement.

SELECT count(value) FROM car1234_x;

5.3 More Sophisticated Operations
Thanks to the expressiveness of SQL, more sophisticated
operations on persistent signals can also be implemented. For
example, the lastDiffmethod, which returns the difference
between the current (i.e., latest) value of the signal and its
specified recent past value, is represented by joining the same
tables (views) using different offsets. We use the following
example.

signal int dx12 = c12x.lastDiff(1);

This example uses lastDiff to declare the view signal dx12.
This signal declaration is translated into the following CREATE
VIEW statement, which uses the SELECT query derived from
the call of lastDiff.

1 CREATE VIEW dx12 AS

2 SELECT

3 x.id AS id, x.value - y.value AS value

4 FROM

5 c12x AS x,

6 (SELECT id,value FROM c12x OFFSET 1) AS y

7 WHERE x.id = y.id - 1;

This statement first creates another view (line 6) that is the
result of shifting the rows of c12x using the offset value
specified as the argument to lastDiff (in this case, 1), and
then joins this view with c12x using that offset (as indicated
in the WHERE clause) and selects the difference between both
values (line 3).

Operations that require multiple signals are also imple-
mented in a similar way. The following signal v12 calculates
the velocity of the vehicle using two signals, dx12 and dy12.

signal int v12 = dx12.distance(dy12);

This is straightforwardly implemented by creating a view by
joining the views that correspond to those signals.

An Approach for Persistent Time-Varying Values Onward! ’19, October 23–24, 2019, Athens, Greece

CREATE VIEW v12 AS

SELECT

dx12.id AS id,

sqrt(dx12.value*dx12.value+

dy12.value*dy12.value) AS value

FROM dx12, dy12

WHERE dx12.id = dy12.id

5.4 Notes on Glitches
Some RP languages introduce glitches, i.e., temporary incon-
sistencies in the signal networks. Thus, it is worth discussing
whether this problem can occur in our approach.

SignalJ supports pull-based signals and push-based events.
This means that a signal is re-evaluated whenever it is ac-
cessed (and thus it is guaranteed to be glitch-free), but events
(i.e., an assignment to a source signal) are pushed to all com-
posite signals that depend on the source signal. Because the
event handler is called asynchronously, in general it can in-
troduce glitches. From the viewpoint of persistent signals, an
access to a view signal is pull-based; thus, the glitch freedom
looks freely given. However, it is important to note that this
glitch freedom is provided only when each record is associ-
ated with an appropriate serial number. The use of “parallel
assignment” discussed above may synchronize all source sig-
nals in the same connected signal network, allowing glitches
to be avoided.

5.5 Synchronizing Source Code with the Database
The above explanations of persistent signal semantics are
based on SQL statements with an assumption that there is a
database. Obviously, the database schema should be available
before the application is running, and our language model
hides the database details from the source code.
To achieve this requirement, we adopt an approach in

which the database schema is automatically generated from
the source code. The compiler analyzes the source code and
determines the persistent and view signals that requires
tables and views in the database schema. Then, the compiler
runs a script that consists of the CREATE statements extracted
from this analysis. This is similar to the model generation
mechanism supported by Rails6.
In taking such an approach, we must consider the soft-

ware evolution. Usually, the software development process
includes a sequence of compilations and test runs. In each
test run, records stored in the database may be discarded. On
the other hand, considering the software lifecycle, the ap-
plication is likely to be modified after its release. While this
modification may alter the database schema, it is preferable
to migrate existing data into a database with the new schema,
rather than clean the database contents. This schema alter-
nation further raises an issue if the database is itself shared

6http://rubyonrails.org

with other applications. Even though our proposal does not
consider the database to be shared at first (the reason for
using the database is its convenience for implementation of
persistent signals), it is natural to consider exposing the data
in the database to other applications.

At present, the CREATE statements are automatically gen-
erated from the source code. The remaining issue is when
to execute the statements. Currently we assume that all per-
sistent signals are static. That is, the compiler prepares all
required tables and views. Executing CREATE statements at
runtime will raise several issues regarding performance and
garbage collection. We leave solving these issues as future
work.

To execute all these features, we assume that the developer
first selects the compilation mode, indicating whether the
database contents should be preserved after the compilation,
and/or whether they will be shared with other applications.
The compiler then generates an SQL script that, according to
this mode, either cleans up the tables and views and creates
new ones or alters the database schema, and builds the whole
application. This process is further explained below for each
compilation mode.

• Clean-upMode: In this mode, all tables and views are
dropped and new ones are created during compilation.
This mode is selected when retaining the existing data-
base contents is not necessary. For example, records in
the database are stored by test runs. In this case, those
records are not necessary in the subsequent modifica-
tions.
• Data Preserving Mode: In this mode, the compiler
preserves the database contents and alters the tables
and views when necessary. The compiler analyzes
whether the modification requires any changes in the
database schema by comparing the database schema
generated from the modified source code with the ex-
isting schema. If these are identical, there is no need to
change the database schema and the compiler does not
execute any SQL statements. If there are differences,
the compiler drops tables for all removed persistent
signals, creates tables for all newly introduced persis-
tent signals, alters tables and views for all persistent
signals whose definitions have been altered, and drops
and creates views for all affected views. This mode is
selected in the case where the database contains data
used in the running application.
• Data Sharing Mode: In this mode, the compiler com-
pares the database schema generated from the modi-
fied source code with the existing schema. If there are
differences, the compiler does not change the existing
schema but generates a mapper from the new schema
to the existing schema if possible. For example, we can
generate such a mapper when some signals have been
renamed. In other cases, the compiler reports an error.

http://rubyonrails.org

Onward! ’19, October 23–24, 2019, Athens, Greece Tetsuo Kamina and Tomoyuki Aotani

Figure 4. Compilation process

To be accurate, the compiler should be aware of the inten-
tion of the source code modification. For example, in the data
preserving mode, the compiler should not drop the table in
cases where the persistent signal has merely been renamed.
One approach to letting the compiler know the intention is
to provide an interactive interface that enables the program-
mer to communicate with the compiler. In this paper, we do
not consider this issue further.

Figure 4 summarizes this process. Our compiler reads and
analyzes the SignalJ program. This analysis includes com-
parison between the current database schema and signal
declarations, and the compiler generates the SQL script to
modify the database schema. The database subsystem runs
this script to update the database schema (this implies that
the database subsystem should be available during compila-
tion). Meanwhile, the compiler generates Java bytecode.

6 Preliminary Evaluation
The proposed language relies on the mapping from persis-
tent signals to the underlying database instance. To simply
explain the semantics of persistent signals using the under-
lying database mechanisms, this mapping is kept simple.
Before considering a more efficient mapping, it is worth
studying how feasible our approach is by measuring its per-
formance in this setting. For this purpose, we conducted
preliminary microbenchmark experiments that measure the
response time for each time-oriented query, analytic query,
and insertion of new records into the tables that represent
the persistent signals.

These microbenchmarks were performed on Linux kernel
version 3.10.0 running on a four-cores Intel Core i5-4440
3.10GHz CPU with 8 GB of main memory. The underlying
database management system was PostgreSQL 9.6.0 with
TimescaleDB 1.1.1. For this benchmarking, we tested the
aforementioned vehicle tracking example. We created 100
vehicles (i.e., 200 signals (tables) that correspond to the x- and

Figure 5. Response time of the within query (ms)

y-coordinates of each vehicle). We also created five views for
each vehicle: views that hold the last 12 hours of data for each
coordinate (12x and 12y, resp.), views that hold the difference
between values in 12x and 12y and their previous values
(12dx and 12dy, resp.), and a view that holds the estimated
velocities of the vehicle during the last 12 hours (12v). In
short, as examples in Sections 4 and 5, these views were
created using within. Each table consists of 22,032 records
inserted at 10 minute intervals over three days (resulting in
432 records), at 1 minute intervals over three days (resulting
in 4,320 records), and at 5 second intervals over one day
(resulting in 17,280 records). The size of the database was
414 MB in total.

Our purpose is not to find the best database configurations
that gives the best performance. Here, we are judging the
feasibility of the proposed system, so all experiments were
conducted under the default settings, using a small shared
buffer (128 MB) and enabling the autocommit feature. We
aimed for a response time of less than 10 ms, which will be
satisfactory performance for many applications.

We did not compare between versions of SignalJ with and
without persistent signals by running the program without
persistent signals because the extended SignalJ compiler
actually generates the same code whether the source code
contains any persistent signals or not.

6.1 Result 1: Time-Oriented Queries
First, we measured the performance of the time-oriented
analytic query (i.e., within) because we assume it will be
intensively used, in particular for creating view signals. This
measurement was performed by issuing the following query
for each table (thus, 200 queries were executed in total).

SELECT value FROM [table name]

WHERE time > NOW() - interval '10 minutes'

This query returns all records inserted within the last ten
minutes. The box-and-whisker plot of the response times
is shown in Figure 5. The average response time was 0.370

An Approach for Persistent Time-Varying Values Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 6. Response time of the avg query (ms)

Table 2. Average of response time of the avg query (ms)

x-coord. y-coord. 12x 12y 12dx 12dy 12v
2.83 2.70 1.99 1.93 8.87 8.87 21.0

ms. The figure shows that most queries were performed
within less than 0.4ms, and theworst casewas approximately
0.5 ms. This result shows that TimescaleDB, which adds
hooks into PostgreSQL’s query planner, data model, and
execution engine to enable high-performance interactions
with time-series data, is quite responsive and stable for the
time-oriented queries used in the proposed language.

6.2 Result 2: Analytic Queries
We also measured the performance of other analytic queries
such as count, sum, avg, and max. We executed these queries
against each table and view. The results are shown in Fig-
ure 6, which shows the case of avg. The average response
time is shown in Table 2. The results of other analytic queries
were very similar. These results indicate that, compared with
within, the analytic queries require more response time.
Nevertheless, all queries (except for those performed on 12v)
were performed within less than 10 ms, and their perfor-
mance was stable in that there were no outliers. Queries
performed on the views of 12v were quite slow because these
views were constructed using a complex SELECT subquery
to calculate the velocity of the vehicle.

Interestingly, the response times for views of 12x and 12y
were a bit faster than those for tables. We consider that this
is because the size of each view (which holds the time-series
values that were inserted only within the last 12 hours) is
smaller than that of the underlying table (which holds all
past time-series data). Moreover, the SELECT queries used in
the CREATE VIEW statements rely on time-oriented queries,
which were shown to be quite fast in Section 6.1. Thus, even
though those views were created at runtime, their construc-
tions were fast enough to overcome the longer response

Figure 7. Response time when assigning a new value to a
signal (ms)

time of the analytic queries. We will also see this tendency
in Section 6.4.

6.3 Result 3: Appending Data
To measure the response time when assigning a new value
to a signal, we executed the INSERT query, which inserts a
new value to the signal for each table. The result is shown
in Figure 7. This figure indicates that most of the data inser-
tion required nearly 2 ms and thus the results were mostly
satisfactory. However, compared with the query results, the
performance of data insertion looks unstable. Some of the in-
sertions required a much longer response time, and the worst
case was over 14 ms. Thus, there might be cases in which
the latest value has not yet been inserted to the table at the
time when the corresponding persistent signal is accessed.
The caching mechanism that holds the most recent values
in the main memory will compensate for this problem.

6.4 Results with Increasing Number of Records
We also studied how the number of records in the database
affects the performance by measuring the query response
times of tables and viewswith different numbers of records in
the tables. This experiment was performed in tables with 100,
1,000, 10,000, and 100,000 records. The size of each database
was 28 MB, 50 MB, 205 MB, and 1.76 GB, respectively. These
records were inserted at a rate of one every 5 seconds.
Figure 8 shows the average response times of within

measured by issuing the queries shown in Section 6.1 for
each number of records. This graph indicates that the number
of records does not significantly affect performance. Even
when each table contains of 100,000 records, most queries
were completed within less than 0.4 ms, which is similar to
the result shown in Figure 5.
Figure 9 shows the average response times of avg for

each number of records. This graph also shows the results

Onward! ’19, October 23–24, 2019, Athens, Greece Tetsuo Kamina and Tomoyuki Aotani

Figure 8. Response time of within with 100, 1,000, 10,000,
and 100,000 records (ms)

Figure 9. Response time of avg with 100, 1,000, 10,000, and
100,000 records (ms)

for views derived from the tables (12x, 12y, 12dx, 12dy, and
12v). This graph indicates that although queries on tables
took longer when the number of records was higher, the
time needed for queries on views 12x and 12y was not sig-
nificantly affected by the number of records. We can also
see this tendency in views 12dx, 12dy, and 12v (which are
constructed using complex SELECT subqueries) when the
number of records is large. Queries performed on 12dx and
12dy were faster than those performed on the underlying
tables when each table consists of 100,000 records. We also
tested the same query on the database with tables contain-
ing 1,000,000 records (the size was 17 GB), and observed
that the response times of queries performed on views did
not increase. This is consistent with the results shown in
Section 6.1: because each view contains a limited number
of records and view construction is quite fast, the response
time of avg on a view is insulated from the influence of the
number of records in the tables.

These results indicate that time-oriented queries are quite
useful for filtering out unnecessary data before performing

analytic queries when the number of time-series records is
large.

6.5 Summary
Taken together, the above experimental results show that
our preliminary implementation is responsive in most cases.
Although queries performed on a view constructed by a
complex SELECT subquery were slow, other queries could
be performed within our desired response time. Thus, we
conclude that our approach to persistent signals will be fea-
sible for many applications, and additional study will further
enhance the performance.
We note some threats to validity of this study. First, we

did not perform any stress tests in which a large number
of queries were issued simultaneously. In general, stress
testing requires a practical environment in which a real ser-
vice will be deployed. In such an environment, the database
should be configured so as to make it fault tolerant and high
performance. Unfortunately, we could not prepare such an
environment; the experiments described in this paper were
conducted on a standalone database running on a single desk-
top PC without redundancy or distribution. Nevertheless, we
are optimistic about making it possible for the persistent sig-
nals to handle a large amount of queries simultaneously. The
results of other research indicate that the existing time-series
databases are scalable enough [13].

Because the above experiments were intended as a prelim-
inary evaluation to judge whether it is valuable to continue
study in this direction, we did not apply any optimizations to
the database, conducting the experiments under the default
settings. Altering the configuration by changing the memory
settings, the number of worker threads, and lock manage-
ment style would yield different results. Furthermore, we
may also consider another DBMS because the ACID prop-
erties provided by an RDBMS may be less relevant for per-
sistent signals. If the ACID properties are relaxed, NoSQL-
based time-series databases become candidates, although
there is still a tradeoff between performance and expressive-
ness. Finding an ideal DBMS implementation for our purpose
remains as future work.

7 Related Work
The techniques for RP have been inspired by synchronous
languages [3, 10, 23] and functional-reactive programming
(FRP) languages [7]. FRP features have been embedded in
general-purpose functional languages (e.g., the Yampa li-
brary [20] for Haskell), and recently such features have made
their way into imperative object-oriented settings [14, 18, 24]
by integrating signals with event-based programming fea-
tures [8].
Debugging for RP is enhanced by time-traveling [21],

which records the execution history of the application to
make it possible to pause the execution and rewind to any

An Approach for Persistent Time-Varying Values Onward! ’19, October 23–24, 2019, Athens, Greece

earlier execution point. Time-traveling is now common in
RP debuggers. For example, Reactive Inspector [25], a de-
bugger for REScala [24], visualizes how signal networks are
constructed and evolved and how propagations take place
over those networks during execution. Using this debugger,
a programmer can see the status of the networks at any exe-
cution point. In other words, these tools stores time-series
values for each signal to make time-traveling possible. In
this sense, these tools are related to the system proposed
in this paper. Some tools also provide visualization of such
time-series data, such as allowing viewing of the execution
history in a single display to identify anomaly propagation
patterns that are repeated over time [2, 11, 12]. Usually, such
tools are dedicated to debugging, and the time-series data
handled in them are not provided for use by applications. For
example, no convenient APIs to query over such time-series
data are provided.
In our study, persistent signals were implemented using

TimescaleDB, a time-series extension to PostgreSQL. Jensen
et al. presented a survey on time-series databases, which are
also known as time-series management systems [13]. In their
survey, time-series databases were categorized into internal
data stores, external data stores, and RDBMS extensions. An
internal data store (e.g., tsdb presented by Deri et al. [5]) inte-
grates both a data store and a processing engine together in
the same application, allowing for deep integration between
the storage and the processing engine. In another approach,
an external data store (e.g.,Gorilla by Pelkonen et al. [22] and
BTrDB by Andersen and Culler [1]) uses an existing external
DBMS, allowing for existing DBMS deployments to be reused.
Finally, an RDBMS extension (e.g., TimeTravel by Khalefa et
al. [15]) allows the expressive power of the RDB to be applied
to the time-series database. TimescaleDB, used in our imple-
mentation, falls into this last category. Overall, there have
been many time-series database implementations suitable
for different use case scenarios. Although the experimental
results shown in this paper indicate that using TimescaleDB
might be satisfactory in many cases, it will be beneficial to
consider other implementations that are specialized to our
domain. This is left to future work.
In the proposed language, the programmers do not con-

struct a database query explicitly but a programming inter-
face is provided to perform a query. In this sense, our ap-
proach is based on (a limited version of) language integrated
queries. One well-known implementation of language inte-
grated queries is LINQ [17], which is available for the .NET
framework. ScalaQL [27] is another example, implemented
on Scala. jOOQ7, a Java-based query interface, provides lan-
guage integrated queries in the form of a fluent API. Relative
to embedding SQL statements in the host languages, lan-
guage integrated queries are preferred because they reduce
the impedance mismatch between the application and the

7http://www.jooq.org

database layers and enable the compiler to check the type
safety of the queries. Our approach also adopts this, integrat-
ing the time-oriented queries into the language even though
the available API is still limited. Designing more expressive
language integrated time-oriented queries remains as future
work.

8 Conclusions and Future Work
This paper proposed an approach for persistent signals that
bridges the gap between RP and time-series databases. For
this purpose, SignalJ, a Java-based RP language, is extended
to allow explicit declaration of persistent signals and to
provide an API for performing time-oriented and analytic
queries on such signals. A preliminary implementation based
on TimescaleDB, a PostgreSQL-based time-series database,
was developed, and simple microbenchmarks of this system
showed that the proposed approach is promising in most
respects.

This work also clearifies a variety of paths for future work,
as listed below.

8.1 Performance
Pursuing the best tuning for the DBMS will provide better
performance. Furthermore, we may also consider another
implementation based on a different DBMS. In doing so, we
should consider the tradeoff between the performance and
expressiveness. Even though the current implementation is
realized using an external DBMS, this setting is not inher-
ently necessary, and we may also consider an internal data
store that is specialized to our domain. Thus, finding an ideal
implementation will be a valuable subject for study in the
future.

8.2 Non-primitive Persistent Signals
Another direction for future research is to extend the API
and the data model. Currently, the persistent signals support
only primitive types. However, in SignalJ, any objects can
be declared as a signal. To make such signals persistent, we
need to develop a mapping from the object to records in a
database and provide a method to make them time-series
data. Existing OR mapping mechanisms might be usable for
this, but we need to be careful to ensure consistency without
sacrificing performance. Thus, this direction of research is
also worth considering.

8.3 Dynamically Generated Persistent Signals
One significant limitation in our approach is that each per-
sistent signal should be statically declared. This means that
in the microbenchmark, each car carXXX corresponds to one
of 100 hard-coded vehicles. This is unrealistic in many IoT
applications. Instead, we could dynamically generate a signal
representing the vehicle that need to be inspected.

http://www.jooq.org

Onward! ’19, October 23–24, 2019, Athens, Greece Tetsuo Kamina and Tomoyuki Aotani

The above mentioned non-primitive persistent signals
may address this problem. Assuming that carTable is a
persistent signal that holds a join of all vehicles, we could
declare a signal carX that represents one of the cars.

persistent signal Vehicles carTable = ...

signal int carX =

carTable.select(/* some query keys*/);

signal int c12x =

carX.within(Timeseries.now, "12 hours");

In this case, carX is a view signal on which we can perform
any time-oriented queries. Assuming that the query key is
also declared as a signal, its change will be propagated to
carX, resulting in a new instance being referenced by carX.
This “switch” will be further propagated to c12x.

In this scenario, each instance referenced by carX corre-
sponds to a view in the database. Obviously, this requires
dynamic construction of views. We also need to consider
garbage collection when a view becomes inaccessible from
the program, with the caveat that we might want to reuse
a view that becomes accessible again (such as by issuing a
query that was issued earlier).

We note that carTable is also a (persistent) signal. Unlike
the above scenario, a change in carTable should not result
in the switch of the instance referred to by carX. This means
that we need to develop a different propagation strategy
(not switching the persistent signal but instead changing
its internal time-series data) for the network of persistent
signals whose records are non-primitive.

In summary, non-primitive persistent signals and dynamic
construction of persistent signals are related issues that are
worth considering.

8.4 Migration
This paper does not consider the scenario in which a time-
series database already exists and a new application is to
be developed using signals and the database. Because time-
series databases handle non-primitive values in general, the
above discussed OR mapping will be useful in such a case.
One issue will be the handling of time, because most of the
existing time-series databases do not provide serial numbers
representing the logical time. To supply the logical time, we
need to identify which entries are considered synchronized,
and this migration to argmented time-series data should be
automated. There are many issues (e.g., automatic detection
of synchronized data) worth considering in future work.

8.5 Distribution and Glitches
Finally, designing efficient update propagation with consis-
tency guarantees in distributed RP has been identified as
an interesting problem [6, 16, 19]. This issue becomes even
more interesting when we consider transactions, that is, han-
dling of synchronizied signals (i.e., signals with the same

logical time). We are planning to apply recently developed
distributed database mechanisms[26, 28] that provide scale-
out capabilities while ensuring the data consistency to the
implementation of persistent signals. A PostgreSQL-based
distributed database system is also available8. This research
will be performed under the assumption that the semantics of
a distributed RP can be explained using distributed database
mechanisms.

Because computation of signals in SignalJ is basically pull-
based, it is inherently glitch-free, and this property will also
be held in distributed settings. However, SignalJ does pro-
vides an asynchronous push-based event mechanism, and
for some uses push-based computation of signals is neces-
sary (e.g., the aforementioned dynamic construction of view
signals). Thus, glitches are still potential issues in our set-
ting, and a scheduling mechanism to avoid them is worth
considering.

Acknowledgements. This research was supported by the
Kayamori Foundation of Informational Science Advance-
ment and JSPS KAKENHI Grant Number 17K00115.

References
[1] Michael P. Andersen and David E. Culler. BTrDB: Optimizing storage

system design for timeseries processing. In 14th USENIX Conference
on File and Storage Technologies (FAST’16), pages 39–52, 2016.

[2] Herman Banken, Erik Meijer, and Georgious Gousios. Debugging data
flows in reactive programs. In ICSE’18, pages 752–763, 2018.

[3] Gérard Berry and Georges Gonthier. The Esterel synchronous pro-
gramming language: Design, semantics, implementation. Science of
Computer Programming, 19(2):87–152, 1992.

[4] Gregory H. Cooper. Integrating Dataflow Evaluation into a Practical
Higher-Order Call-by-Value Language. PhD thesis, Department of
Computer Science, Brown University, 2008.

[5] Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A compressed
database for time series. In TMA, 2012.

[6] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.
Distributed REScala: an update algorithm for distributed reactive pro-
gramming. In OOPSLA’14, pages 361–376, 2014.

[7] Conal Elliott and Paul Hudak. Functional reactive animation. In
Proceedings of the 2nd ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’97), pages 263–273, 1997.

[8] Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and
Jacques Noyé. EScala: modular event-driven object interactions in
Scala. In Proceedings of the 10th International Conference on Aspect-
Oriented Software Development (AOSD’11), pages 227–240, 2011.

[9] Yossi Gil and Tomer Levy. Formal language recognition with the Java
type checker. In ECOOP 2016, pages 10:1–10:27, 2016.

[10] Nicholas Halbwachs, Paul Caspi, Pascal Paymond, and Daniel Pilaud.
The synchronous data flow programming language Lustre. Proceedings
of the IEEE, 79(9):1305–1320, 1991.

[11] Takumi Hikosaka, Tetsuo Kamina, and Katsuhisa Maruyama. Visualiz-
ing reactive execution history using propagation traces. In REBLS’18,
2018.

[12] Jeff Horemans and Bob Reynders. Elmsvuur: A multi-tier version of
elm and its time-traveling debugger. In TFP 2017, volume 10788 of
LNCS, pages 79–97, 2017.

8https://www.citusdata.com/

https://www.citusdata.com/

An Approach for Persistent Time-Varying Values Onward! ’19, October 23–24, 2019, Athens, Greece

[13] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen.
Time series management systems: A survey. IEEE Transactions on
Knowledge and Data Engineering, 29:2581–2600, 2018.

[14] Tetsuo Kamina and Tomoyuki Aotani. Harmonizing signals and events
with a lightweight extension to Java. The Art, Science, and Engineering
of Programming, 2(3), 2018.

[15] Mohamed E. Khalefa, Ulrike Fischer, Torben Bach Pedersen, and Wolf-
gang Lehner. Model-based integration of past & future in TimeTravel.
In Proceedings of the VLDB Endowment (PVLDB), pages 1974–1977,
2012.

[16] Alessandro Margara and Guido Salvaneschi. We have a DREAM:
distributed reactive programming with consistency guarantees. In
Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems (DEBS’14), pages 142–153, 2014.

[17] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling
objects, relations and XML in the .NET framework. In ICMD 2006,
2006.

[18] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and ShriramKrishnamurthi. Flap-
jax: A programming language for Ajax applications. In Proceedings of
the 24th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Application (OOPSLA’09), pages 1–20, 2009.

[19] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. Dis-
tributed reactive programming for reactive distributed systems. The
Art, Science, and Engineering of Programming, 3(3):5:1–5:52, 2019.

[20] Henrik Nilsson, Antony Courtney, and John Peterson. Functional
reactive programming, continued. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell (Haskell’02), pages 51–64, 2002.

[21] Laszlo Pandy. Bret Victor style reactive debugging. Elm Workshop,
2013.

[22] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,
Qi Huang, Justin Meza, and Kaushik Veeraraghavan. Gorilla: A
fast, scalable, in-memory time series database. Proc. VLDB Endow.,
8(12):1816–1827, 2015.

[23] Marc Pouzet. Lucid Synchrone version 3.0: Tutorial and Reference Man-
ual. Université Paris-Sud, LRI, April 2006. Online manual.

[24] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging
between object-oriented and functional style in reactive applications.
In Proceedings of the 13th International Conference on Modularity (MOD-
ULARITY’14), pages 25–36, 2014.

[25] Guido Salvaneschi and Mira Mezini. Debugging for reactive program-
ming. In ICSE’16, pages 796–807, 2016.

[26] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whip-
key, Eric Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina,
Stephan Ellner, John Cieslewicz, Ian Rae, Traian Stancescu, and Hi-
mani Apte. F1: A distributed SQL database that scales. Proceedings of
the VLDB Endowment, 6(11):1068–1079, 2013.

[27] Daniel Spiewak and Tian Zhao. ScalaQL: Language-integrated data-
base queries for Scala. In SLE 2009, pages 154–163, 2009.

[28] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. Amazon Aurora: Design
considerations for high throughput cloud-native relational databases.
In SIGMOD’17, pages 1041–1052, 2017.

[29] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In
PADL 2002: Practical Aspects of Declarative Languages, volume 2257 of
LNCS, pages 155–172, 2002.

	Abstract
	1 Introduction
	2 Signals in SignalJ
	3 Making Signals Persistent
	4 Language Design
	4.1 Persistent Signals
	4.2 Time-Oriented Operations

	5 Implementation
	5.1 Key-Value Tables for Signals
	5.2 Implementing Signal Operations using Database Queries
	5.3 More Sophisticated Operations
	5.4 Notes on Glitches
	5.5 Synchronizing Source Code with the Database

	6 Preliminary Evaluation
	6.1 Result 1: Time-Oriented Queries
	6.2 Result 2: Analytic Queries
	6.3 Result 3: Appending Data
	6.4 Results with Increasing Number of Records
	6.5 Summary

	7 Related Work
	8 Conclusions and Future Work
	8.1 Performance
	8.2 Non-primitive Persistent Signals
	8.3 Dynamically Generated Persistent Signals
	8.4 Migration
	8.5 Distribution and Glitches

	References

