Visualizing Reactive Execution History using
Propagation Traces

In Progress Paper

Takumi Hikosaka Tetsuo Kamina Katsuhisa Maruyama
Ritsumeikan University Oita University Ritsumeikan University
Japan Japan Japan

is0230si@ed.ritsumei.ac.jp
Abstract

Reactive programming is an emerging programming para-
digm where reactive behavior in modern software that peri-
odically responds to changes in surrounding environments
is naturally and declaratively represented. One well-known
technique for debugging reactive programs is time-traveling
where we can pause the execution and rewind to any earlier
point in the execution history. On the other hand, anomalies
in a data stream often appear in the form where the stream
sometimes conveys an error, which may repeat over time. To
find such an error, an aid to overview the execution history
might help. In this paper, we propose a tool that visualizes
the execution history of a program written in a reactive
programming language to help the programmer find when
suspicious updates of reactive values occur in the history.
We also propose a method to record the execution history
that makes this visualization possible. Then, we provide a
couple of research questions that will be answered in the
future work.

ACM Reference format:

Takumi Hikosaka, Tetsuo Kamina, and Katsuhisa Maruyama. 2018.
Visualizing Reactive Execution History using Propagation Traces.
In Proceedings of REBLS’18, Boston, United States, November 4th,
2018, [6] pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction

Reactive programming (RP) is a paradigm where change
propagation between reactive values, each of which consti-
tutes a data stream in that its value is periodically updated,
is declaratively specified. There have been lots of program-
ming languages that directly provide language features to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

REBLS’18, Boston, United States

© 2018 ACM. 978-x-xxxx-xxxx-X/YY/MM...$15.00

DOLI: 10.1145/nnnnnnn.nnnnnnn

kamina@acm.org

maru@cs.ritsumei.ac.jp

support RP, and it has been shown that reactive behavior
in modern software that periodically responds to changes
in surrounding environments is naturally represented in
such languages. Examples are reactive extensions (Rx) to
lots of modern programming languages, functional reactive
programming (FRP) languages [[11[2[15] where we can declar-
atively specify networks of time-varying values (i.e., signals),
and languages that integrate signals with event-based pro-
gramming [[4][6][12]].

One well-known technique for debugging programs in RP
is time-traveling. Elm provides a time-traveling debugger
that enables programmers to pause the execution and rewind
to any earlier point in the execution history [7]. Reactive
Inspector [13]], a debugger for REScala [12]], also provides a
similar mechanism that is combined with visualization of
signal networks.

One limitation of such time-traveling debuggers is that the
history of execution is perceived only through animations
and thus we cannot grasp the whole execution history in
a single display. For example, anomalies in a data stream
often appear in the form where the stream sometimes con-
veys a wrong value. Thus, we first would like to overview
what values the stream had conveyed in the execution, and
then directly go back to the execution point when the wrong
value was produced to inspect the reason for this anomaly by
following the dependency graph of signal networks. How-
ever, using the time-traveling debuggers we need to carefully
replay the execution to find the execution point where some
suspicious update of reactive value occurs, which can be a
time-consuming task.

This paper proposes a tool, which is an extension of Re-
active Inspector, that visualizes the execution history of a
program written in an RP language to help the program-
mer find when suspicious updates of reactive values occur
in the history. One issue in implementing this tool is how
to represent one execution step. In Reactive Inspector, this
step corresponds to one update or propagation of a signal
value; i.e., while the propagations in a single connected sig-
nal network theoretically occur at the same time, the debug-
ger shows every step in the propagations that are sorted
and sequentially executed. However, from the viewpoint of
the execution history, the visualizer should show that those

REBLS’18, November 4th, 2018, Boston, United States

propagations occur at the “same time,” which is more natural
w.r.t. the semantics of RP languages [4]. Thus, in our visu-
alizer, one execution step consists of propagations within
the same connected signal network. We also consider that
our tool enhances program comprehension in RP languages,
as it shows the logical timing of reactive execution that is
coherent with the RP language semantics.

To determine the set of propagations that occur in the
same time, additional analysis to log the execution history
is necessary. Assuming a glitch-free RP language, our tool
maintains a logical time whose update is synchronized with
update propagation in a single connected signal network.
Our tool records this logical time for each signal update;
thus, our tool can determine which updates occur at the
same time.

Finally, we raise a couple of research questions, which will
be answered in the future work, to study whether the pro-
posed tool is really effective for RP debugging and program
comprehension.

The contributions of this paper are summarized as follows:

o The design of time-traveling visualizer, which is co-
herent with the RP language semantics w.r.t. the up-
date propagation timing, where we can overview the
history of update propagations in the signal network
to help the programmer find errors that sometimes
occur in the history.

o The method to record the execution history that can
be applied to our visualization tool.

o The design of our future research in the form of re-
search questions.

2 Motivation
2.1 RP: A Brief Overview

RP has been proposed to address the limitations of procedural
languages, which heavily depend on callbacks to represent
reactivity, and such callbacks make programs difficult to
understand, analyze, and achieve separation of concerns
because of the inversion of control triggered by them. Two
language constructs, signals and events, play important roles
in RP.

A signal directly represents a time-varying value, i.e., a
value that is a function of time. For example, the following
code fragment shows motor control software in REScala [12]],
where the power of the motor is determined using a function,
namely, f, according to the current sensor value.

‘val powerDifference = Signal{ f(sensorValue()) }

This declares a signal (time-varying value) powerDifference
that depends on sensorValue, which is also a signal. By ac-
cessing sensorValue, we can obtain the value of the sensor
at this time, and by accessing powerDifference, the power
difference at this time is obtained accordingly. This means
that every update in sensorValue is automatically propa-
gated to powerDifference. Thus, these signals declaratively

Takumi Hikosaka, Tetsuo Kamina, and Katsuhisa Maruyama

represent the functional dependency between the sensor
value and the motor.

The other mechanism is an event, which is useful when
signals interact with existing imperative programs. For exam-
ple, the motor will be accompanied by the API for controlling
it, which is implemented as a legacy library where the power
of the motor is set by an imperative operation. In such a
case, we can represent an update of powerDifference as
an event, and register an event handler that propagates this
update to the library function, namely, adjustMotor that
changes the power of the motor. REScala provides several
built-in functions that return an event. For example, changed
is a function that returns an event that is fired everytime
the value of the receiver signal is updated. The following
code fragment registers an event handler that is called ev-
erytime the value of powerDifference is changed to call
adjustMotor with current value of powerDifference.

‘powerDifference.changed +=
| { (e) -> adjustMotor(e) }

2.2 Debugging for RP

RP mechanisms are now well-studied, and known to be use-
ful for a variety of application domains including, e.g., Web
applications [[6] and embedded systems [14]. As RP lan-
guages abstract the underlying computation details in a quite
different way from the imperative languages, we should con-
sider a different way of tool support for software develop-
ment using RP [13]. In this paper, we focus on a debugging
support for RP.

To inspect what is going on in a program written in an RP
language, there have been two useful ways of tool support
that do not appear in the traditional breakpoint debugging
for imperative languages: (1) visualization of signal networks
and (2) time-traveling. In RP, computations occur in the
form of update propagation throughout the signal networks
that represent the dependency between signals. Reactive
Inspector [13], a debugger for REScala, revealed that visual-
izing how such networks are constructed and evolved, and
showing which value is conveyed in a particular part of prop-
agation are quite useful for debugging for RP. These features
are achieved by setting a breakpoint on each creation and
update of a signal.

Time-traveling enables programmers to pause the execu-
tion and rewind to any earlier point in the execution history,
which was realized in the Elm debugger [7]. Reactive Inspec-
tor also provides a similar feature that enables back-in-time
debugging, i.e., changes in the signal network over time can
be inspected by navigating the execution history back and
forth.

Figure[1|shows the visualization of signal dependency in
Reactive Inspector. Each rounded rectangle represents a reac-
tive node in the network such as a signal or an event handler.
This is a snapshot of a particular execution point, and each

Visualizing Reactive Execution History using Propagation Traces

lems] Tasks B Console & Progress |~ Reactive Tree £2

judge message
false Normal
year

— ——> [EventHandier]

Figure 1. Visualizing a signal network

val year = Var(@)
val judge = Signal{
year()%4==0 ||
(year()%100!=0 && year()%400==0) }
val message = Signal{
if (judge()) "Leap Year" else "Normal Year"}
year.changed += { _ => println(message.now) }

Figure 2. A bug in judging leap year.

signal contains the value at that execution point. We can
observe how update propagation proceeds by replaying the
execution in a stepwise or back-in-time manner. We can also
inspect how this network is constructed and evolved.

2.3 Limitation in Existing Debugging

One limitation of time-traveling is that the execution history
is perceived only through animations; it plays as a flipbook
where each page is a snapshot of the signal network at a
particular time. On the other hand, anomalies in a data
stream, which constitutes values of a signal over time, often
appear in the form where the stream sometimes conveys a
wrong value. Thus, inspecting such values over time would
be helpful to find the bug. However, in the time-traveling
setting, we cannot overview the list of execution points in a
single display.

To be precise, we use an example program that judges
whether every each year that passes in a data stream in
the order is leap year (Figure [2). This example is written
in REScala, and both judge and message are signals that
convey boolean and string values, respectively. The variable
year is also a signal, which is special, as it does not depend
on any other signals and its value is imperatively updated.
In this paper, we call such a signal a source signal. The signal
year conveys integer values, each of which is consumed
by judge to evaluate whether current value of year is a
leap year. This judgment is consumed by message to pro-
duce a string representation for that judgment that is finally
displayed by the event handler registered to year.changed.
This handler is called every time the value of year is updated.

This program is not correct, as it accidentally judges every
multiplier of 100 as a leap year. This kind of failure might be

REBLS’18, November 4th, 2018, Boston, United States

overlooked, as it does not always produce a wrong value; at
least 99 of 100 values in message are correct in this program.
If we could overview the history of message, it would be
much easier to find what is going on, because we can find
the pattern of anomaly that is repeated over time.

3 Approach

To address this limitation, we propose a visualization of the
execution history, where we can overview all the past com-
putations in a particular signal network to help programmers
find some anomaly patterns that are repeated over time. To
this end, we extend Reactive Inspector, the aforementioned
debugger for REScala, which already provides a mechanism
to record the history of signal networks that can be a basis
for our visualization tool.

3.1 Propagation Traces

To visualize the execution history, we need to preserve an
execution trace [10], which is a sequence of execution points.
To make our discussion precise, we need to define what is an
execution point. For example, an execution point might be
every step in the program execution. However, such a fine-
grained execution point is not meaningful for our purpose,
as we only focus on signal updates and their propagations.
For example, to enable time-traveling, Reactive Inspector
records every signal update, as well as every construction
of signal network and every call of event handler. These
records are necessary for back-in-time debugging and replay
of the execution. In other words, Reactive Inspector defines
an execution point as an update of a signal. So the question
is whether this definition is suitable for our purpose.

To answer this question, we first need to see the fact that,
when visualizing the execution history, we are concerned
with the logical time. Actually, every connected update prop-
agation triggered by an update of a source signal occurs in
the logically same time. Even though each update of signal
in the same connected network is performed in different real
time, semantically there is no time progress. This semantics
enhances the language understandability in particular for
the RP languages that do not provide any explicit notion of
time [4]. For example, when year in Figure [2]is updated,
judge and message are simultaneously updated. Those up-
dates are considered a single atomic operation, and there are
no inconsistent situations where, e.g., year is updated while
other connected signals remain in the old values.

Even though Reactive Inspector is useful to inspect the
flow of propagations (e.g., inspecting the propagation order),
to show the execution history, we require a more coarse-
grained definition for an execution point. We define an exe-
cution point as a set of signal updates that are performed in
the same logical time. We note that, to visualize a sequence
of such execution points, we need to record additional in-
formation in the log that indicates the set of signal updates

-

IS

1.

-

~

REBLS’18, November 4th, 2018, Boston, United States

that occur in the same time, which is explained in the next
section.

3.2 Recording Propagations in the Same Time

To make it possible for our visualization tool to identify the
set of signal updates that occur in the same time, the tool tags
each signal update with the time when that update occurs.
For example, consider the case where the existing tool can
record the name of signal and the new value when that
signal is updated, and the format of this record looks like:
signalName:newValue. We extend this record to include
the update time: signalName:newValue, time. Thus, the
execution history of the example in Figure [2looks like as
follows:

year:1898, 20352
judge:false, 20352
message:Normal Year, 20352

year:1899, 20362
judge:false, 20362
message:Normal Year, 20362

This log indicates that the first three lines (lines 1-3) and the
last three lines (lines 5-7) occur in the same time.

It is obvious that the time in the records should not be
the current time obtained by the environment. While update
propagations in a connected signal network occur in logically
the same time, these are sequentially performed in possibly
different real time. Thus, we need a mechanism to maintain
a logical time at runtime that is different from the real time.

This logical time is incremented everytime a new update
of a connected signal network, i.e., an update of a source
signal (Var), is detected. As REScala is a glitch free language,
each update of logical time can be synchronized. In our tool,
the value of this logical time remains in the same value until
all propagations in the connected network end. Thus, when
recording updates of signals, we can record the same logical
time for the propagations in the same connected network.

We note that an invocation of an event handler is per-
formed after the update of the corresponding signal. For
example, the event handler for year.changed in Figure
is called after the update of year (and of course after the
update of every connected signal), and thus message used in
the event handler always conveys the value after the update.
This means that the call of event handler is performed in
different logical time from the update of the corresponding
signal.

3.3 Visualizing the History

The analyzed propagation trace is visualized as shown in
Figure[3] This diagram shows a history of the signal network
in Figure[2|and its associated event handler. We assume that
a single network is selected for visualization. Horizontal
arrows indicate the progress of the logical time. Dashed

Takumi Hikosaka, Tetsuo Kamina, and Katsuhisa Maruyama

vertical arrows indicate the update propagations, and solid
vertical arrows indicate the event handler calls. Each oval
indicates a value of the signal at a particular logical time.
Signal updates tagged by the same logical time are placed in
the same vertical line; thus, it is easy to see the propagations
that occur in each execution point. It is also easy to see
that each event handler call is triggered after the update
propagations.

A suttle issue arises when we consider evolution of the
signal network. In REScala, a signal network is evolving dy-
namically. For example, in Figure[2] the source signal year
is created first, and then judge is created and connected
with year. These creations and connection occur in different
logical time; e.g., year may be updated before judge is con-
nected with that. Our visualization tool should reflect such
timings in the evolution of the signal network.

Figure [4| shows how our tool visualizes evolution of the
signal network. Each creation of signal that is created later
is not placed directly below the formerly created signal but
shifted to right, which means that, e.g., judge is created and
connected with the network after the creation of year, and
message is created and connected with the network after the
creation of judge. In the log record, each creation of signal
is assigned with the different logical time; thus we can easily
implement this shifting. In this example, the source signal,
year, is not updated during the evolution. Thus, initial values
for each judge and message are calculated using the initial
value of year.

Figure [5| shows the case where there is a branch in the
signal network. In this case, each year in the Japanese Era is
calculated for each year in the Christian Era. This diagram
shows that there is a branch at the update of year, and to
reflect the fact that this branch is updated at the same logical
time with the update of judge and message, the sink of
branch is located in the same vertical line with the sinks to
judge and message.

Even though the aforementioned examples contain only a
single signal network, we note that this mechanism can easily
be extended to multiple signal networks, as our mechanism
rely only on the logical time. One issue is how to filter
irrelevant parts of the network from a large scale diagram.
For this purpose, we are planning to develop an extension
of the query mechanism provided by Reactive Inspector.
We also note that our signal networks are limited to those
represented in Reactive Inspector. For example, a nested
network (i.e., a signal of a signal) is not visualized in our
tool.

4 Discussion and Research Questions

Currently we are developing a visualizer of RP execution
traces that is proposed in this paper. Our hypothesis is that
this visualization enhances efficiency of finding bugs in the
programs written in a RP language. By “efficiency” we mean

Visualizing Reactive Execution History using Propagation Traces

judge: Signal

‘message: Signal ‘

i

Leap
year

REBLS’18, November 4th, 2018, Boston, United States

Leap
year

s

=0 e

‘yeatchanged ‘

Figure 3. Visualization of the history of Figure

COo——CoCor
judge: Signal _
message: Signal _

year.changed

Figure 4. Visualizing evolution of the signal network

e ver] (1099)—(1085) 1090)—(11)

judge: Signal
e | <2~ 0~
year
: E i i
: Showa
eraName: Signal $ 3 3

Figure 5. A branch in propagation

both cost efficiency and high bug detection rate. An ad-
vantage of our tool is that our tool shows each signal as a
data stream while preserving the visibility of dependency
between signals. By showing each signal as a data stream,
we can easily see anomaly patterns that are repeated over
the stream. For example, in Figure 3] we can see the pattern

that every multiplier of 100 is accidentally judged as a leap
year.

We also consider that this tool enhances program compre-
hension in RP languages. This tool visualizes the RP language
semantics in that every update in the same connected signal
network occurs in “the same time,” and the handler is called
after the update, i.e., a signal referred in the handler holds
the value after the update. This might be tricky for novice
programmers. For example, in Figure [2} a programmer who
is used to imperative languages would consider that judge
is updated after year is updated, and message is updated
after judge is updated. This consideration is not a mistake,
as it reflects the propagation ordering. However, this pro-
grammer might accidentally consider that the event handler
for year.changed is called just after the update of year and
before the update of message. Our visualization correctly
shows the (logical) timing of propagations and event handler
calls. Thus even a novice for RP can easily understand that
message referred in the event handler holds the value after
the update propagations.

However, these our prospections have not been validated
yet. To validate them, we raise the following research ques-
tions whose answers will be provided in the future research.

RQ1. Is debugging of reactive applications with the pro-
posed visualization easier than with debugging only
with time-traveling?

RQ2. Does the visualization help novices to understand
programs written in an RP language?

5 Related Work

While RP languages are now well-studied, how to support
RP in the entire development process, including debugging,
using a proper tool ecosystem remains as a research issue.
Reactive Inspector [13], which we have introduced in this pa-
per, is the debugger that visualizes update propagations and

REBLS’18, November 4th, 2018, Boston, United States

the evolution of the signal networks. This also enables back-
in-time debugging, similar to time-traveling, that enables the
execution to rewind to any earlier execution point. Our tool
is based on this debugger to make us possible to overview
the execution history. Yampa Debugger [8] demonstrates
particular challenges in testing and debugging in interactive
applications can be eased in a pure FRP language. Its GUI
tool visualizes an input stream and violations of assertions
based on temporal logic. On the other hand, our tool puts
more emphasis on how a particular signal is related with
other signals, and how functional signal updates interact
with side-effective event handlers. The similar illustration of
timeline can also be found in Elmsvuur [3] that applies the
timeline to show multi-tier communication.

Using traces to incorporate the notion of time to enable
programmers navigate over the execution was first proposed
in trace-based debugging [10]]. Several trace-based debug-
ger have been developed for OO languages [5[9,11]. These
debuggers visualize global traces that consist of execution
threads and method calls, as well as local traces for particular
data or control flows, to facilitate navigation over execution.
Based on RP, our tool puts more emphasis on showing log-
ical timing for computations in RP such as signal update
propagations and event handler calls.

6 Conclusions and Future Work

A tool that visualizes the execution history, which consists of
signal update propagations and event handler calls, has been
introduced. We designed a time-traveling visualizer where
we can overview the history of update propagations in a
connected signal network and its associated event handlers.
We have argued that this tool makes debugging of reactive
applications easier, as it helps us to find some anomaly pat-
tern that repeated over time in the data stream. We have also
argued that this tool enhances program comprehension in
RP languages. Our prospections are, however, not validated
in the paper.

As future research, we are planning to conduct some con-
trolled experiments to answer the aforementioned research
questions. In this experiments, we will measure both time
and bug detection rate with and without using our tool. We
will also provide several tasks to understand programs in a
RP language to novice subjects and measure a percentage of
correct answers with and without using our tool.

Acknowledgment

This work was sponsored by the Grant-in-Aid for Scientific
Research (15H02685).

References

[1] Gregory H. Cooper. Integrating Dataflow Evaluation into a Practical
Higher-Order Call-by-Value Language. PhD thesis, Department of
Computer Science, Brown University, 2008.

Takumi Hikosaka, Tetsuo Kamina, and Katsuhisa Maruyama

[2] Conal Elliott and Paul Hudak. Functional reactive animation. In
Proceedings of the 2nd ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’97), pages 263-273, 1997.

[3] Jeff Horemans and Bob Reynders. Elmsvuur: A multi-tier version of
elm and its time-traveling debugger. In TFP 2017, volume 10788 of
LNCS, pages 79-97, 2017.

[4] Tetsuo Kamina and Tomoyuki Aotani. Harmonizing signals and events
with a lightweight extension to java. The Art, Science, and Engineering
of Programming, 2(3), 2018.

[5] Bil Lewis. Debugging backwards in time. In AADEBUG 03, 2003.

[6] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi.
Flapjax: A programming language for Ajax applications. In Proceedings
of the 24th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Application (OOPSLA’09), pages 1-20, 2009.

[7] Laszlo Pandy. Bret Victor style reactive debugging. Elm Workshop,
2013.

[8] IvanPerez and Henrik Nilsson. Testing and debugging functional reac-
tive programming. Proceedings of the ACM on Programming Languages,
1, 2017.

[9] Guillaume Pothier, Eric Tanter, and José Piquer. Scalable omniscient
debugging. In OOPSLA’07, pages 535-552, 2007.

[10] Steven P. Reiss. Trace-based debugging. In AADEBUG 1993, volume
749 of LNCS, pages 305-314, 1993.

[11] Kouhei Sakurai and Hidehiko Masuhara. The omission finder for
debugging what-should-have-happended bugs in object-oriented pro-
grams. In SAC’15, pages 1962-1969, 2015.

[12] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging
between object-oriented and functional style in reactive applications.
In Proceedings of the 13th International Conference on Modularity (MOD-
ULARITY’14), pages 25-36, 2014.

[13] Guido Salvaneschi and Mira Mezini. Debugging for reactive program-
ming. In ICSE’16, pages 796-807, 2016.

[14] Kensuke Sawada and Takuo Watanabe. Emfrp: a functional reac-
tive programming language for small-scale embedded systems. In
MODULARITY Companion, pages 36—-44, 2016.

[15] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In
PADL 2002: Practical Aspects of Declarative Languages, volume 2257 of
LNCS, pages 155-172, 2002.

	Abstract
	1 Introduction
	2 Motivation
	2.1 RP: A Brief Overview
	2.2 Debugging for RP
	2.3 Limitation in Existing Debugging

	3 Approach
	3.1 Propagation Traces
	3.2 Recording Propagations in the Same Time
	3.3 Visualizing the History

	4 Discussion and Research Questions
	5 Related Work
	6 Conclusions and Future Work
	References

