
Mapping Context-Dependent Requirements to
Event-Based Context-Oriented Programs for Modularity

Tetsuo Kamina
University of Tokyo

kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology

aotani@is.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

ABSTRACT
There are a number of ways to implement context-dependent
behavior, such as conditional branches using if statements,
polymorphism (such as the state design pattern), aspects in
aspect-oriented programming (AOP), and layers in context-
oriented programming (COP). The way to implement context-
dependent variations of behavior significantly affects the mod-
ularity of the obtained applications.

This paper proposes a model of context-dependent re-
quirements and shows the systematic translation from the
model to the implementation in the existing COP language
EventCJ. The model represents the following facts: (1) ab-
stract contexts, context-dependent use cases, and groups of
related use cases called layers; (2) concrete contexts (de-
tailed specification of contexts), context-related external en-
tities, and their correspondence to the abstract contexts;
and (3) events that trigger changes of the contexts and thus
switch the variations of behavior. We show that all such
facts are injectively translated into the program written in
EventCJ.

Keywords
Context-oriented programming, Events, Requirements model,
Translation to implementation

1. INTRODUCTION
Context-awareness is one of the major concerns in many

application areas. It refers to the capability of a system to
behave appropriately with respect to its surrounding con-
texts. A context implies a specific state of a system and/or
an environment that affects the system’s behavior. For more
precise definition, it is identified by observing behavioral
changes in the application. An example of context-aware
application is a ubiquitous computing application that be-
haves differently in relation to situations such as geograph-
ical location, indoor or outdoor environment, and weather.
In this case, some specific states of situations are contexts.
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An adaptive user interface can also be considered as context-
aware as it provides different GUI components (behavior)
relative to the current user’s task (contexts).

This paper focuses on a methodology to efficiently spec-
ify requirements for context-aware applications and system-
atically implement them. There are a number of ways to
implement context-dependent behavior, such as conditional
branches using if statements, polymorphism (such as the
state design pattern), aspects in aspect-oriented program-
ming (AOP), and contexts and layers in context-oriented
programming (COP) [12]. The way to implement context-
dependent variations of behavior significantly affects the mod-
ularity of the obtained applications. For example, a number
of such variations are simultaneously activated/deactivated
at runtime due to the change in current situation, and imple-
menting them using if statements easily crosscut multiple
modules. In that case, it is preferable to identify such situ-
ations as contexts in COP languages.

Besides context-dependent behavior, a foreseeable control
of change of context-dependent behavior is also important.
There are complex relations between contexts (that affect
the applications behavior) and variations of behavior, which
make the modification in behavioral changes with respect to
a change in the specification error prone. Thus, systematic
identification of contexts and variations of behavior depend-
ing on them is required. Furthermore, selecting modular-
ization mechanism for context changes is also important,
because context changes are scattered over the whole execu-
tion of the application.

In summary, the challenge is to develop a way to coor-
dinate a number of variations of context-dependent behav-
ior and systematically select linguistic mechanisms to imple-
ment them.

In this paper, we propose a model of context-dependent
requirements and show the systematic translation from that
model to the implementation in the existing COP language
EventCJ [15]. This model identifies the following require-
ments specifications: (1) abstract contexts, context-dependent
use cases, and groups of related use cases called layers; (2)
concrete contexts (detailed specification of contexts), context-
related external entities, and their correspondence to the ab-
stract contexts; and (3) events that trigger changes of the
contexts and thus switch the variations of behavior. The ob-
tained requirements are directly translated to the implemen-
tation with the assumption that the implementation is per-
formed using EventCJ. We formalize this translation to pre-
cisely study how the requirements separated in the specifi-
cations are mapped into modules in EventCJ, and show that



it is mostly injective and performed systematically. Thus,
our approach provides modularity in that requirements are
not scattered to several modules in the implementation, and
each module is not tangled with several requirements.

We demonstrate the effectiveness of this method by con-
ducting two case studies of different context-aware appli-
cations. The first one is a conference guide system, which
serves a guide for an academic conference including manage-
ment of a personal attending scheduling, navigation within
the venue and around the conference site, and an SNS func-
tion such as a Twitter client. The other is CJEdit, a program
editor providing different functionalities relative to cursor
position [5]. In these case studies, we successfully repre-
sented context-related requirements in our model and di-
rectly translated these requirements in the implementations
in EventCJ.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the difficulties in development of context-
aware applications by using an example of simple pedes-
trian navigation system, and limitations of the existing ap-
proaches. Section 3 describes our requirements model. Sec-
tion 4 defines mapping from the facts represented by the
model into the program written in EventCJ. Section 5 illus-
trates case studies. Finally, Section 6 concludes this paper.

2. DIFFICULTIES IN CONTEXT-AWARE AP-
PLICATIONS

We explain the difficulties in development of context-aware
applications by using a simple pedestrian navigation system
implemented on a mobile terminal, which displays the cur-
rent position of the user. This system changes its behavior
according to the situations. When the user is outdoors, it
displays a city map, which is updated whenever the current
position of the user is changed. When the user is inside a
building where a specific floor plan service is provided, it dis-
plays a floor plan of that building. When the user is inside
a building where no such services are provided, it displays
the city map as in the case where the user is outdoors. If no
positioning systems are available, it displays a static map.

Identification of context-dependent behavior.
A context-aware application changes its behavior with re-

spect to current executing context; i.e., there are a number
of variations of behavior depending on contexts. Thus, we
need to identify contexts and requirements variability de-
pending on them. For example, in the pedestrian naviga-
tion system, we can identify contexts such as outdoors or
indoors, the availability of the special floor plan services,
and the availability of the positioning systems. These con-
texts change the behavior of the map and other functions
such as GUI components. For example, the variation of be-
havior “displaying a city map” is selected when the user is
“outdoors.”

Requirements volatility in context sensing.
Technologies for sensing context changes are very complex

and continuously evolving. This means that requirements
specification for context sensing are subject to change. For
example, at first, it seems appropriate to define the out-
doors/indoors situations on the basis of status of the GPS
receiver. However, this definition may change in the future
to use the air pressure sensor or other technologies that are

not currently implemented in the smartphone (such as an
active RFID receiver).

Different levels of abstraction.
As discussed in the volatility in context sensing, contexts

at the abstract level consist of multiple concrete contexts.
For example, the availability of positioning systems depends
on the hardware specifications such as the availability of
GPS and/or wireless LAN functions. Thus, we need to pre-
cisely define what are contexts in terms of the target ma-
chine. This chain of dependency leads to the difficulty in pre-
cise definition on when the variations of behavior switches at
runtime. For example, there may be multiple state changes
in the target machine that trigger a context change, because
some states of executing hardware may barrier or guard the
change of abstract contexts.

Crosscutting of contexts in requirements.
In context-aware applications, a number of variations of

behavior that are at first irrelevant to each other may be
eventually considered relevant in that they are executable
in the same context. For example, we may also identify
variations of behavior for other functions such as GUI com-
ponents. The variation “displaying an alert message on the
status bar”may be considered relevant to“displaying a static
map” if the former is executable only when no positioning
systems are currently available.

Multiple dependency between contexts and behavior.
We also need to carefully analyze dependency between

contexts and variations of behavior, because a number of
variations depend on multiple contexts. For example, ac-
cording to the problem description, the variation “display-
ing a city map”depends both on outdoors/indoors situations
and the availability of the special floor plan service. In this
case, this variation is not selected if either or both situa-
tions “the user’s situation is outdoors” and “the floor plan
service is not available” are not satisfied. In general, multi-
ple contexts may barrier or guard the execution of context-
dependent behavior. This dependency becomes more com-
plicated when we consider the concrete contexts as discussed
above.

Crosscutting of behavioral changes in requirements.
One of the most important properties of context-aware

applications is that they change their behavior at runtime.
Thus, we need to identify when a variation of behavior switches
to another one. As discussed above, however, a variation
may depend on multiple (abstract) contexts, where each
context depends on a number of concrete contexts. In par-
ticular, context changes are scattered over multiple require-
ments. Since their specifications are subject to change, it is
desirable to localize them.

Translation to modular implementation.
The above difficulties (from the viewpoint of requirements)

make it difficult to separately translate requirements to the
implementation. We need to carefully trace which require-
ments are implemented by which modules. It is also desir-
able if a module in the implementation is not tangled with
multiple requirements but it implements only a single re-
quirement. Thus, to support modularity, it is desirable that



there is an injective mapping from requirements to the im-
plementation.

2.1 Existing Approaches
COP languages provide a novel linguistic construct to

modularize context-dependent behavior called layers. A num-
ber of COP languages have been developed thus far, and
some of them share the same abstraction mechanism based
on layers and partial methods [4, 6, 9, 11]. On the other
hand, Few research efforts are devoted to systematize the
design of context-oriented programs. For example, it is
not unclear how to discover layers from requirements, and
when using layers is more preferable than using existing
object-oriented mechanisms and if statements to implement
context-dependent behavior. For dynamic activation of lay-
ers, a number of mechanisms have been proposed in COP.
Most of the existing COP languages are based on a dy-
namically scoped layer activation mechanism using so-called
with-blocks, which makes context activation code scattered
over the whole program. Event-based activation of layers
with the support of aspect-oriented programming (AOP)
features are proposed to separate the control of layer activa-
tion from the base program [15, 6]. All these mechanisms are
useful with the assumption that we already determine what
are contexts and what are behavioral variations depending
on them. We require a software development methodologies
that addresses aforementioned difficulties.

There have been a number of software development method-
ologies. Object-oriented methodologies are useful to discover
objects and classes from the requirements and analyze them.
Aspect-oriented software development (AOSD) methodolo-
gies [14, 21] are useful to find crosscutting concerns and
modularize them. Feature-oriented software development
(FOSD) [3] is a method that maps feature diagrams [17],
which are obtained from the analysis of software to be devel-
oped, to implementations. Feature diagrams are useful for
analyzing dependency among features from which software
is constructed. Even though these methodologies provide
a good starting point to consider how we develop context-
aware applications, they do not focus on the solutions for
the aforementioned difficulties. We need to extend the ex-
isting methodologies to systematically identify contexts and
behavior depending on them to provide a foreseeable control
of change of context-dependent behavior.

Recently, a number of approaches to discover, analyze,
and implement contexts and variations of behavior depend-
ing on them have been studied. Several requirements engi-
neering methods [24, 23, 25, 19, 20, 2] mainly focus on dis-
covery and analysis of (abstract) contexts and variations of
behavior depending on them. Henrichsen and Indulska pro-
posed a software engineering framework for pervasive com-
puting [10]. They do not provide any systematic ways to
manage volatile requirements for concrete context, and to
modularly implement them. Specifically, they do not iden-
tify a set of variations that comprises one single module.
Frameworks and libraries for context-aware applications pro-
vide context-aware software components and thus enhances
reusability, addressing some of the difficulties mentioned
above [8, 7, 1, 22]. They are domain-specific and any general
solutions for context-aware applications are provided.

3. A MODEL OF CONTEXT-DEPENDENT
REQUIREMENTS

Figure 1: Use case diagram for the pedestrian navi-
gation system

We propose a model of context-dependent requirements
that represents the following requirements specifications:

1. Abstract contexts, use cases that depend on them, and
groups of related use cases called layers

2. Concrete contexts (detailed specification of contexts),
context-related external entities, and their correspon-
dence to the abstract contexts

3. Events that trigger changes of the contexts and thus
switch the variations of behavior

3.1 Abstract contexts
A context in our model is defined in terms of variables

that take finite states (values). By observing the behavior
(such as use cases) of the pedestrian navigation system, we
identify the following variables:

name values

situation outdoors, indoors
floorPlan available, unavailable
positioning available, unavailable

Each of those variables corresponds to the situation for
using the system, the availability of the floor plan service,
and the availability of the positioning devices, respectively.
In the following sections, we call a specific setting of value
to a variable (i.e., a state of the variable) as a context.

3.2 Context-dependent use cases
Our model identifies context-dependent use cases. A context-

dependent use case is a use case annotated with a propo-
sition that specifies when it is executable. In general, a
context-dependent use case specializes another use case. For
example, in the pedestrian navigation system, we can iden-
tify a use case “using a map” (Map). We can then iden-
tify three context-dependent use cases “using a city map”
(CityMap), “using a floor plan” (FloorPlan), and “using a
static map” (StaticMap). All these context-dependent use
cases are specialization of Map. CityMap is annotated with
the proposition situation=outdoors∨floorPlan=unavailable,
which means that it is executable only when the value of sit-
uation is outdoors or the value of floorPlan is unavailable.
Similarly, FloorPlan is annotated with situation=indoors∧
floorPlan=available, and StaticMap is annotated with posi-
tioning=unavailable (Figure 1).

3.3 Grouping context-dependent use cases
Context-dependent use cases that are executable under

the same context are grouped into one layer. In general, a
system consists of a number of use cases. Figure 2 shows a



Figure 2: The context-dependent use case that dis-
plays an alert message

Figure 3: The model of layers

use case diagram for another interaction between the pedes-
trian navigation system and the user, namely “using the
main menu.” There is a context-dependent use case, namely
“seeing an alert message”(Alert), which describes the behav-
ior of the pedestrian navigation system that displays an alert
message indicating that no positioning systems are available
on the status bar. Note that this use case is annotated
with the same condition as StaticMap. This means that
the use cases StaticMap and Alert are executable under the
same context. To provide better maintainability, our model
groups such use cases into one layer1.

We show the model of layers by using the UML class di-
agram in Figure 3. A layer consists of its name and the
proposition annotated to the constituent context-dependent
use cases (in this diagram, we omit context-dependent use
cases, because they share the same proposition within the
same layer). This proposition is represented by the class
CProposition, which has three subclasses. CBinary repre-
sents binary operators ∧ and ∨, CUnary represents the unary
operator ¬, and CAtom represents a ground term, which is
the name of context and its value represented by the class
Context. Note that we consider the contexts that share the
same name but have different values as different instances;
i.e., each field of Context is considered “final.”

3.4 Specifying concrete contexts
While contexts are abstract from the viewpoint of be-

havioral variations, when we identify requirements from the
viewpoint of context sensing, we need to consider more con-
crete level of contexts. We firstly list all resources of the
running machine and external entities that are relevant to
the context-dependent behavior. For example, we list the
following resources and external entities for the pedestrian
navigation system:

1Each layer directly corresponds to a layer declaration in
existing COP languages.

Figure 4: The model of resources and their mapping

• Resources: GPS, Wi-Fi

• External entities: the floor plan services (FP)

We refer them as concrete contexts. Then, we map the
pairs of concrete contexts and their values to those of ab-
stract contexts and their values. By analyzing when the sys-
tem is in each context with respect to the status of concrete
contexts, we can create a mapping from abstract contexts to
concrete contexts. For example, the value of positioning is
available when the GPS device is switched on, or the Wi-Fi
device is connected to the Internet. Table 1 summarizes this
mapping.

The model of concrete contexts and their mapping to ab-
stract contexts is shown in Figure 4. Each concrete context
(represented as Resource in Figure 4) consists of its name
and value. As in the case of abstract contexts, we distin-
guish a concrete context that has the same name but pro-
vides the different value as a different instance. The class
Mapping provides the function get that takes an instance
of Context and returns a proposition, which is represented
by the class RProposition. This class has three subclasses
RBinary, RUnary, and RAtom to represent binary operators,
the unary operator, and ground terms, respectively.

3.5 Identifying Events
In terms of concrete level of contexts, we identify events

that change those contexts. Each event consists of its name,
a pair of a concrete context and its value before the state
change occurs, a pair of the concrete context and its value af-
ter the state change occurs, and the description about when
this state change occurs. For example, the value of the GPS
becomes “over the criterion value” from “under the criterion
value” when the received GPS signal value becomes greater
than the preset value; we can identify this state change as

Table 1: Mapping from contexts to machine-level
resources in the pedestrian navigation system

context value resource configuration

situation outdoors GPS=over the criterion
indoors GPS=under the criterion

floorPlan available FP=exists
unavailable FP=do not exists

positioning available GPS=on or Wi-Fi=connected
unavailable GPS=off

and Wi-Fi=disconnected



Table 2: Examples of the identified events
name transition when

StrongGPS GPS=over the criterion the GPS signal
→ GPS=under the value becomes

criterion under XXX
GPSEvent GPS=off → GPS=on the GPS device

is becoming on
WifiEvent Wi-Fi=disconnected the Wi-Fi device

→ Wi-Fi=connected is connected and
the IP address is
properly set

Figure 5: The model of events

an event with the name StrongGPS. We list some examples
of the events identified in the pedestrian navigation system
in Table 2.

The model of events is shown in Figure 5. Each event
consists of its name, concrete contexts before and after the
event is generated, and its description.

4. TRANSLATING TO THE IMPLEMENTA-
TION

This section discusses how the specifications represented
by our model are separately translated to each linguistic con-
struct of the existing COP language, namely EventCJ [15,
16]. To make this paper self-contained, we firstly provide a
short introduction to EventCJ. Then, we define the trans-
lation from our model to EventCJ to demonstrate how this
translation is systematically performed.

4.1 Short Introduction to EventCJ
As in other COP languages, layers and partial methods

comprise the mechanism for modularization of context-dependent
behaviors in EventCJ.

Figure 6 shows an example of layers and partial meth-
ods in EventCJ that are responsible for displaying a map
in the pedestrian navigation system. The class Navigation

declares the method run that updates the map. Navigation
also declares three layers, namely CityMap, FloorPlan, and
StaticMap. CityMap defines the behavior of the map when
the system is outdoors; FloorPlan defines the behavior of
the map when there is a special floor plan service; and Stat-

icMap defines the behavior when there are no available po-
sitioning devices. All layers extend the original behavior of
run by declaring around partial methods, which are executed
instead of the original run method when the respective layer
is active2.

In COP languages, we can dynamically activate and deac-
tivate layers. For this purpose, EventCJ provides the when

2There are also before and after partial methods that exe-
cute before and after the execution of the original method,
respectively, when the respective layer is active.

1 class Navigation extends MapActivity

2 implements Runnable, LocationListener {

3 MyLocationOverlay overlay;

4 void onStatusChanged(..) { .. }

5 void run() {}

6 void onCreate(Bundle status) {

7 .. overlay.runOnFirstFix(this); ..

8 }

10 layer CityMap when StrongGPS || !FPExists {

11 void run() { .. }

12 }

13 layer FloorPlan

14 when !StrongGPS && WifiConnect && FPExists {

15 void run() { .. }

16 }

17 layer StaticMap when !GPSon && !WifiConnect {

18 void run() { .. }

19 }

20 }

Figure 6: Layers and partial methods in EventCJ

clauses in the layer declarations (this feature is available
from the later version of EventCJ [16]), layer transition rules,
and events.

The when clauses control the implicit activation of lay-
ers. If a layer is declared with a when clause (as shown in
Figure 6), it implicitly becomes active when the proposition
specified by the when clause becomes true. In this propo-
sition, each ground term is the name of a layer (true when
active). For example, the layer CityMap is active only when
StrongGPS is active or FPExists is not active. We can use
the logical operators ||, && and ! to compose propositions.

A layer that does not have a when clause is called a context
(we may declare partial methods and other members in such
a layer. In this example, though, all such layers have an
empty body):

layer StrongGPS {}

layer WifiConnect {}

layer FPExists {}

layer GPSon {}

The activation of such layers are controlled by layer transi-
tion rules, which are triggered by events (explained below).
Examples of layer transition rules upon events GPSEvent and
WifiEvent are as follows:

transition GPSEvent: -> GPSon

transition WifiEvent: -> WifiConnect

...

Each rule starts from the keyword transition, and is fol-
lowed by an event name and a rule. The left-hand side of the
-> operator (omitted in this example) consists of contexts
to be deactivated, and the right-hand side consists of con-
texts to be activated. We may add a guard for the rule by
putting the ? operator at the left hand side of ->, which is
also omitted in this example. We may concatenate multiple
subrules by the | operator; in such a case, only the left-
most applicable rule is applied. Thus, the first rule above is
read as, “upon the generation of GPSEvent, the layer GPSon

is activated.”



Figure 7: The model of EventCJ

EventCJ provides events to trigger the layer transition
rules. The following code fragment shows a declaration of
event GPSEvent:

declare event GPSEvent(Navigation n, int s)

:after call(void Navigation.onStatusChanged(s))

&&target(n)&&args(s)

&&if(s==LocationProvider.AVAILABLE);

An event declaration consists of two parts: a specifica-
tion that indicates when the event is generated and a spec-
ification that indicates where the event is sent. The for-
mer is specified by using AspectJ-like pointcut sublanguage
[18], and the latter is specified by using the sendTo clause
that lists instances that receive the event. For example, GP-
SEvent specifies when it is generated by using the pointcut
specification that specifies a join-point just after the onSta-

tusChanged method on Navigation is called with the argu-
ment value indicating that the location provider is available.
In this example, the sendTo clause is omitted, which means
that the effect of the event is global, i.e., it changes the be-
havior of all classes in the program.

To discuss the correspondence between our model and
EventCJ, we show the metamodel of EventCJ programs in
Figure 7. Each layer, represented by the class ECLayer, con-
sists of its name and the when clause, which is represented
by the class WhenClause (we abstract other irrelevant con-
structs such as classes from this metamodel). This class has
three subclasses: ECBinary, ECUnary, and ECAtom. ECAtom

represents a ground term for the when clauses, which is a
context (i.e., a layer that does not have a when clause). This
is represented by the class ECContext. ECBinary and ECU-

nary represent binary operators and the unary operator for
the when clauses, respectively. An event, represented by
ECEvent, consists of its name and the specification about
when this event is generated written in the pointcut lan-
guage. A layer transition rule, represented by LT, consists
of the corresponding event, a context that guards the tran-
sition (c1), a context that is deactivated (c2), and a context
that is activated (c3).

4.2 Definition of mapping
To precisely study how the requirements separated in the

specifications are translated into modules in EventCJ, and
which parts of this translation can be mechanized, we for-
mally define the translation from our model to EventCJ.
First, concrete contexts represented in our model are mapped
to contexts in EventCJ. We define a function mapR that

maps each instance of Resource in Figure 4 to an instance
of ECContext in Figure 7. This function is injective. Note
that this function may be a partial function, because some
concrete contexts take just two exclusive values and thus
we need to identify only one context in EventCJ. Exam-
ple mappings defined for the pedestrian navigation system
are as follows (we represent an instance of ECContext by its
name in the typewriter format):

mapR(GPS=over the criterion value) = StrongGPS

mapR(GPS=on) = GPSon

mapR(Wi-Fi=connected) = WifiConnect

mapR(FP=exists) = FPExists

This mapping should be manually defined by the developer.
Next, we define the mapping from layers in the model to

those in EventCJ. For this purpose, we define the function
mapL that takes an instance of Layer in Figure 3 and returns
an instance of ECLayer in Figure 7. The returned instance
consists of a name mapped from the name of the argument
instance, and the when clause that is mapped from the corre-
sponding context annotation CProposition in Figure 3 (let
l be an instance of Layer):

mapL(l) = new ECLayer(id(l.name),
mapC(l.annotation))

For the name mapping, we assume the identity function id
that takes a string text and returns it. We further need
to elaborate how to map an instance of CProposition to
that of WhenClause, which is defined by the function mapC .
Since CProposition is an abstract class, we need to define
the cases for each concrete class. If the instance of CPropo-
sition is a composite proposition, i.e., that is an instance
of either CUnary or CBinary, we define the map function as
follows (let c, c1, and c2 be instances of CProposition):

mapC(c1 ∧ c2) = mapC(c1) ∧mapC(c2)
mapC(c1 ∨ c2) = mapC(c1) ∨mapC(c2)

mapC(¬c) = ¬mapC(c)

If the instance of CProposition is an atom, we obtain the
corresponding proposition by the class Mapping in Figure 4,
and map it to the when clause:

mapC(c) = mapRP(Mapping.get(c.context))

The get function returns a proposition (an instance of RPropo-
sition in Figure 4), which is mapped to an instance of When-
Clause in Figure 7 by the mapRP function at the right-hand
side. Since RProposition is an abstract class, we also need
to define the cases for each concrete class. We only show the
case when the instance of RProposition is RAtom (let r be
an instance of RProposition):

mapRP(r) = new ECAtom(mapR(r.resource))

It firstly maps a resource to a context in EventCJ, and cre-
ates an instance of ECAtom.

The mapping from events (in the model) to events (in
EventCJ) is obvious (let e be an instance of Event):

mapE(e) = new ECEvent(
id(e.name),
mapR(e.r1), mapR(e.r2), mapD(e.d))

It maps the name, resources, and the description to the cor-
responding constructs in EventCJ, and creates an instance



of ECEvent. For the name mapping, we may assume the
identity function. The description is mapped to the cor-
responding pointcut expression. This mapping is manually
performed by the developer. We may apply the method to
identify AspectJ’s pointcut from the extension pointcut in
use cases, described in [14].

The events in the model are also mapped to layer transi-
tion rules. For this purpose, we define the function mapLT

that takes an instance of Event and returns an instance of
LT in Figure 7:

mapLT(e) = new LT(
new ECEvent(id(e.name), mapD(e.d)),
mapR(e.r1), mapR(e.r1), mapR(e.r2))

For the concrete implementation, we need to populate def-
initions of classes, methods, and partial methods into the
source code. Designing base code (i.e., classes and meth-
ods) from use cases is fully discussed in [13], and we do not
describe it in detail in this paper. The method for designing
layers is a straightforward extension of [13].

This mapping is mostly mechanized. The developer needs
to provide the name mapping from resources to contexts (in
EventCJ) and pointcut expressions for each event. How-
ever, we may automate other parts. Furthermore, all the
mapX functions are injective. Thus, this mapping provides
modularity in that requirements are not scattered to sev-
eral modules in the implementation, and each module is not
tangled with several requirements.

5. CASE STUDIES
This section demonstrates the applicability of our model

to development of context-aware applications through two
case studies.

5.1 Conference Guide System
The first case study is a conference guide system, which

serves a guide for an academic conference. This system
is implemented on an Android smartphone, and provides
the conference program, management of personal attending
scheduling, navigation inside the venue and around the con-
ference site, an alarm function that notifies the user if the
user is out of the session room when the starting time of
the session is approaching, and a Twitter client to enable
the user to have a live of the conference. This system has
a couple of context-related behavioral variations listed as
follows:

• The conference program is provided online; the user
can view the online program when the Internet is avail-
able for the smartphone. The downloaded program is
cached on the local database if no cached program is
available. The user can view the cached program when
no Internet connections are available. The user cannot
view the program if there is no cached program and no
Internet connections are available.

• From the program, the user can select sessions that
she will attend. The selected sessions are listed on the
personal attending schedule. The listing of the selected
sessions is available only when there are some selected
ones.

• The system provides a map function. When the user
is within the conference venue, the map provides a

floor plan of that venue. When the user is out of the
venue, it provides a city map around the conference
site, which is updated when the new position of the
user is detected. The positioning is performed based
on GPS or the Wi-Fi connection. If no positioning
devices are available, it provides a static map around
the conference site.

• The system provides a Twitter client, which is avail-
able only when the Internet is available.

According to these problem descriptions, we identify the
following contexts:

name values

Internet available, unavailable
cache available, unavailable
schedule available, unavailable
situation outdoors, indoors
positioning system available, unavailable

Then, we identify a number of context-dependent use cases.
For example, we identify following context-dependent use
cases by considering the use case for viewing conference pro-
gram (each proposition in parenthesis is the proposition for
the use case):

• “viewing online program” (Internet=available)

• “viewing offline program” (Internet=unavailable∧
cache=available)

Another example of context-dependent use case is “using
a Twitter client,”which is applicable only when the Internet
is available:

• “usint a Twitter client” (Internet=available)

Some of the context-dependent use cases share the same
condition. For example, both use cases “viewing online pro-
gram”and“using a Twitter client” are executable only when
the condition Internet=available is true. We group these
context-dependent use cases into a layer WithInternet.

Then, we construct a mapping from contexts to resources.
For example, we show the mapping from Internet and corre-
sponding resources. Assuming that the target smartphone is
equipped with Wi-Fi and mobile network devices, the map-
ping is defined as shown in the following table.

context value resource configuration

Internet available Wi-Fi=connected
or Mobile=connected

unavailable Wi-Fi=disconnected
and Mobile=disconnected

We also define the mapping for other contexts in a similar
manner. Then, events that change contexts are identified by
listing the state changes of the resources.

All these facts discovered above are mapped onto the im-
plementation in EventCJ. We firstly identify the contexts
in EventCJ from the resources. Followings are examples of
contexts that deal with the Internet connectivity:

layer Wifi {} /* Wi-Fi=connected */

layer Mobile{} /* Mobile=connected */

Since those resources take just two exclusive values, “con-
nected” or “disconnected,” we only define one context for
each resource. The other case is represented by the nega-
tion of the defined context.



Layers identified in our model are mechanically translated
to layer declarations in EventCJ. The following layer dec-
laration is obtained by applying the mapping method ex-
plained in Section 4.2 to the layer WithInternet discovered
above:

layer WithInternet when Wifi || Mobile {

Cursor getProgram() { .. }

}

The when clause is obtained by translating the proposition
for the context-dependent use case. The body of layer dec-
laration is populated by some context-dependent behavior.
For example, how to obtain the conference program (imple-
mented by the method getProgram) changes with respect
to the current execution context. Thus, we implement this
method by using a set of partial methods.

Events are translated into event declarations and layer
transition rules in EventCJ. We show an implementation of
the event that switches the value of “Wifi” to be “connected”
as an example:

event WifiEvent(ConferenceGuide cg)

:after call(void ConferenceGuide.onResume())&&

if(cg.getMng().getNetworkInfo().getState()

== NetworkInfo.DetailedState.CONNECTED);

This event is generated when the onResume method declared
in the Activity class (provided by the Android SDK frame-
work), which is the superclass of ConferenceGuide. It checks
the current status of network connection, and if it is config-
ured with an appropriate IP address, a WifiEvent is gener-
ated. The corresponding layer transition rule is as follows,
which activates Wifi when this event is generated:

event WifiEvent: -> Wifi

5.2 CJEdit
CJEdit is a program editor that enhances the readabil-

ity of programs by providing different text formatting tech-
niques for code and comments. The code part is formatted
in a typewriter format with syntax highlighting, and the
comment part is formatted in a rich text format (RTF) that
supports multiple fonts, text sizes, decorations, and align-
ments. Furthermore, CJEdit provides different GUI compo-
nents depending on whether the programmer writes code or
comments. This application is firstly implemented by Ap-
peltauer [5]. We take this example to investigate how our
model fits the development of the existing context-aware ap-
plication.

Since there already exists the original implementation of
CJEdit, we do not perform this case study from scratch. We
use the original implementation as a prototype of this case
study, and by observing the system’s behavior, we firstly
derive contexts listed as follows:

name values

cursor onCode, onComments, none
textRegion code, comments

The cursor takes three states: the cursor is on code (on-
Code), the cursor is on comments (onComments), and the
special case that the cursor does not exist on the editor
(e.g., before clicking the editor after starting the applica-
tion). The text region (textRegion) takes two states: code
and comments.

In CJEdit, we identify the use case “editing a program,”
which includes another use case“displaying the source code.”
We derive context-dependent use cases from these use cases.
“Editing a program” executes different use cases with re-
spect to the cursor’s position; “writing code” is executable
only when the condition cursor=onCode is true, and “writ-
ing comments” is executable only when the condition cur-
sor=onComments is true. “Displaying the source code” ex-
ecutes three different use cases with respect to the text re-
gion and the cursor’s position; “with syntax highlighting” is
executable only when the condition cursor=onCode∧ tex-
tRegion=code is true; “without syntax highlighting” is exe-
cutable only when the condition cursor=onComments∧ tex-
tRegion=code is true; “RTF format” is executable only when
the condition textRegion=comments is true. Since all the
conditions for context-dependent use cases are distinct, we
identify a layer for each context-dependent use case.

The next step is to identify resources and external enti-
ties that affects the values of the contexts, and to construct
a mapping from contexts to those resources and external en-
tities. In the case of CJEdit, however, we found that there is
nothing to do at this step, because this application does not
depend on any specific low-level devices of the target ma-
chine. Thus, we define events by listing the state changes of
the aforementioned contexts.

We show that all the facts obtained above are mapped
into the implementation in EventCJ. First, we identify the
following contexts:

layer OnCode {} /* cursor=onCode */

layer OnComments{} /* cursor=onComments */

layer RndCode {} /* textRegion=code */

Since the cursor takes three states, we identify two of them
as contexts. For the text region, we identify just one context,
since it takes two alternative states.

Layers identified in our model are mechanically trans-
lated to layer declarations. For example, layers implement-
ing context-dependent use cases “writing code” and “writ-
ing comments” are implemented by layers CodeEditing and
CommentEditing:

layer CodeEditing when OnCode {

after void showWidgets() { .. }

after void showToolbars() { .. }

}

layer CommentEditing when OnComments {

after void showMenu() { .. }

after void showToolbars() { .. }

}

In each layer, a when clause is translated from the annota-
tions in the corresponding context-dependent use case. The
body of each layer is populated with partial methods. They
provide partial methods that modify the behaviors of the
original methods for displaying widgets (showWidgets), tool-
bars (showToolbars), and menus (showMenu).

Events are translated into event declarations and layer
transition rules in EventCJ. We show an implementation of
the event that switches the value of the context “cursor” to
be “onCode” as an example:

event MoveOnCode(TextEditor edit)

:after execution(

void TextEditor.onCursorPositionChanged())

&& this(edit);



The layer transition rule triggered by this event is defined
as follows:

transition MoveOnCode:

OnComments ? OnComments -> OnCode

| -> OnCode;

We implement other events and layer transition rules in a
similar manner.

6. CONCLUDING REMARKS
In this paper, we proposed a model of context-dependent

requirements. The model is well expressive to describe vari-
ations of behavior with respect to the abstract contexts,
as well as to represent more concrete and volatile require-
ments about context sensing. This model supports modu-
larity in that the specifications represented by the model are
injectively translated to the program written in the existing
event-based context-oriented language.

This paper only describes the model of requirements and
its mapping to the implementation by using simple exam-
ples. How to document the requirements based on this
model in more sophisticated case studies remains as future
work.
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