
Introducing Lightweight Reactive Values to Java

Tetsuo Kamina
Ritsumeikan University, Japan

kamina@acm.org

Abstract
This paper introduces SignalJ, a lightweight extension of
Java with reactive values. A reactive value is a value that can
depend on other reactive values, and it is implicitly updated
when the depended reactive values are updated. Each reac-
tive value is typed with a signal type, which ensures that the
dependent reactive values are functional. SignalJ also pro-
vides handlers of reactive values that are called whenever
the monitored reactive value is updated. With these features,
SignalJ declaratively specifies dataflows within an applica-
tion in a functional manner, which enables effective imple-
mentation of reactive software. The syntax of SignalJ is al-
most identical to that of Java 8 except that it introduces a
new modifier, signal, to represent signal types.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages

Keywords Reactive programming; Java; Control systems

1. Introduction
The current trend of seamless connections between com-
puting systems and their surrounding environment, such as
cyber physical systems and the Internet of Things, is mak-
ing reactive software increasingly important. To effectively
implement such reactive systems, it is known that, rather
than relying on callbacks, which make control flows tan-
gled and thus hard to understand, it is preferable to di-
rectly specify reactions to events, or declaratively specify the
dataflows from the environment to the reactions. First class
events at the language level have been proposed [1, 3], as
well as dataflow language flavors in modern programming
languages [2]. Both approaches are now integrated in the

REScala programming language [4], which supports both
functional reactive values as well as imperative events.

This paper proposes SignalJ1, a lightweight language ex-
tension of Java with reactive values where events are im-
plicit. To represent reactive values, we introduce signal
types, which ensure that a change in reactive value is im-
plicitly propagated to other reactive values that consume
the changed value. Thus, the dataflow is declaratively rep-
resented. Events in SignalJ are any changes in reactive val-
ues, and their handlers implement reactions to such value
changes. In this paper, we show intuitive explanations of
SignalJ using simple examples. Some details for compli-
cated cases (such as interprocedural dataflows and concur-
rency) are not described in this paper. In particular, we show
how the propagation from the sensor values to the actuation
of motors is declaratively specified using the example of a
PID control system.

2. A Brief Introduction to SignalJ
Reactive values. Reactive values are used to represent
functional dependencies between values in a declarative
way; i.e., a reactive value is a primitive value or a value
that depends on other reactive values. A reactive value is
stored in a variable, which we call a signal, declared with
the signal modifier.

1 signal int a = 5;

2 signal int b = a + 3;

3 a++;

4 System.out.println(b); // 9

5 System.out.println(b.last()); // 8

A signal initialized with a primitive value (e.g., a in the
above code fragment) is a source of the dataflow without
further dependencies, and its value can be updated at run-
time. A signal that depends on other signals (e.g., b in the
above code fragment) represents the functional dependency
between reactive values, and thus it is considered final. The
change in the source signal is implicitly propagated to other
signals that depend on that source. Thus, initially the value
of b is 8, but after that the value of a is updated by a++, the
value of b becomes 9.

Reactive values in SignalJ provide some useful features.
First, line 5 of the above code fragment indicates that we

1 https://github.com/tkamina/SignalJ

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
c© 2016 ACM. 978-1-4503-4437-1/16/10...

http://dx.doi.org/10.1145/2984043.2989215

27



1 class Control {

2 final double P = ..., I = ..., D = ...;

3 Motor motor;

4 signal int position = 2000;

5 signal int p = position - 2000;

6 signal int derivative = p - p.last();

7 signal int diff =

8 (int)(p*P + p.sum()*I + derivative*D);

9 Control(Motor motor) {

10 this.motor = motor;

11 diff.publish(motor::update);

12 }

13 void setPosition(int p) { position = p; }

14 }

15 class Motor {

16 int left, right;

17 void update(signal int diff) {

18 left = diff < 0 ? MAX+diff : MAX;

19 right = diff >= 0 ? MAX : MAX-diff;

20 }

21 }

Figure 1. PID control in SignalJ

can obtain the value of the signal at the time of the last
update. We call the last pseudo method on the signal for
this purpose. Thus, line 5 results in 8, which is the value of
b before execution of a++. We can also use the sum pseudo
method to obtain the summation of the reactive value from
its initialization.

Event handlers. We can implement the response to the
change in reactive value by means of event handlers. An
event handler is a lambda expression or a method reference
that is passed to the publish pseudo method called on the
signal. The following code fragment shows an example:

signal int a = 5;

a.publish(e -> System.out.println(e));

a++; // display 6

The handler is called whenever the signal is updated. Thus,
the lambda expression passed to the publish is called at the
subsequent a++, and the value of a, which is now 6, is dis-
played. We note that an argument of publish, a subscriber,
must be either a lambda expression or a method reference
that receives the reactive value; i.e., the formal parameter
type of the subscriber must be compatible with the reactive
value, and this subscriber implicitly takes the reactive value
as an argument when it is called.

PID control in SignalJ. One of the examples where reac-
tive values and handlers are effective is a program that con-
trols motors on the basis of sensor values, which are con-
tinuously changing. One well-known method to effectively
adjust the power of motors in accordance with the sensor
values is PID control. Figure 1 shows a simplified PID con-
trol in SignalJ. This program controls a two-wheeled robot
where the motor of each wheel moves independently. The

motor’s power difference diff is calculated by considering
three parameters, P, I, and D, of PID control in each step
within the feedback loop, and this power difference deter-
mines the power of each motor in the next step of the feed-
back loop. Note that the integral value of PID is obtained
by calling sum on p (the proportional value of PID), and the
last proportional value (p.last()) is used to calculate the
derivative value of PID.

The feedback loop is formed as follows:

Control ctl = new Control(motor);

while (true) {

int pos = .. // computed from sensor values

ctl.setPosition(pos); }

This loop continuously computes the position (pos) from the
sensor values and updates the reactive value position in
Control. Because it is a reactive value, its change is prop-
agated to all other values that consume position, and thus
the value of diff is updated. Because update in Motor sub-
scribes to diff, this update triggers execution of update,
which updates the power of each motor.

In SignalJ, this control of motors is implemented in
a declarative way, in that we can explicitly specify the
dataflow from the position calculated by the sensors to the
power of the motors. This declarative implementation en-
ables us to only specify the equations using the PID param-
eters and abstracts the details of how the motor powers are
calculated in each step in the feedback loop.

3. Conclusions and Future Work
SignalJ, an extension of Java with reactive values, has been
proposed. As shown by the simplified PID control system, it
declaratively specifies the dataflow in a functional manner,
and effectively represents reactions (such as actuating) with
respect to environmental changes (obtained by sensor val-
ues). The remaining issues are (1) the formalization to pre-
cisely describe the semantics of SignalJ and (2) robust eval-
uation. We are planning to implement a number of reason-
ably large applications using SignalJ in a variety of domains,
including control software, GUI applications, and feed read-
ers, to further study the effectiveness of SignalJ.

References
[1] Patrick Eugster and K.R. Jayaram. EventJava: An extension

of Java for event correlation. In ECOOP’09, volume 5653 of
LNCS, pages 570–594, 2009.

[2] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H.
Cooper, Michael Greenberg, Aleks Bromfield, and Shriram
Krishnamurthi. Flapjax: A programming language for Ajax
applications. In OOPSLA’09, pages 1–20, 2009.

[3] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP’08, pages 155–179, 2008.

[4] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala:
Bridging between object-oriented and functional style in reac-
tive applications. In MODULARITY’14, pages 25–36, 2014.

28


