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Abstract. Linguistic constructs such as if statements, dynamic dis-
patches, dynamic deployments, and layers in context-oriented program-
ming (COP) are used to implement context-dependent behavior. Use of
such constructs significantly affects the modularity of the obtained im-
plementation. While there are a number of cases where COP improves
modularity related to variations of context-dependent behavior and con-
trols of dynamic behavior changes, it is unclear when COP should be
used in general.
This paper presents a study of our software development methodology,
context-oriented software engineering (COSE), which is a use-case-driven
software development methodology that guides us to specification of
context-dependent requirements and design. We develop a systematic
method to determine an appropriate linguistic mechanism to implement
context-dependent behavior and dynamic changes in behavior during
modeling and design, leading to the mechanized mapping from require-
ments and design artifacts formed by COSE to the COP implementation,
which is demonstrated in our COP language ServalCJ through three case
studies. We then identify the key linguistic constructs that make COSE
effective by examining existing COP languages.

1 Introduction

Context awareness is a major concern in many application areas. Hirschfeld et
al. define context as “(a piece of) information which is computationally accessi-
ble” [26]. However, this definition is too general to identify contexts; therefore,
criteria for identification of contexts are necessary. For example, one important
factor of context-awareness is a system’s capability to behave appropriately with
respect to surrounding contexts. Thus, a context is identified by observing be-
havioral changes in the application. An example of a context-aware application
? This paper is an extended version of our previous papers [31], [33]. In this paper, we

refine principles and provide a more detailed description of our methodology. It also
contains a case study not included in previous work.



is a ubiquitous computing application that behaves differently in different situa-
tions, such as different geographical locations, indoor or outdoor environments,
or weathers. In this case, some specific states or situations are contexts. An adap-
tive user interface is also context aware as it provides different GUI components
(behavior) depending on the current user task (context).

There are a number of constructs to implement context-dependent behavior,
such as conditional branches using if statements, method dispatch in object-
oriented programming (e.g., state design pattern), and dynamic deployment of
aspects in aspect-oriented programming (AOP). Context-oriented programming
(COP) [26] provides another mechanism to implement context-dependent behav-
ior. This mechanism is often called a layer, which is a program unit comprising
implementations of behavior that are executable only when some conditions
hold.4 In particular, COP provides disciplined activation mechanisms to ensure
some consistency in dynamic changes in context-dependent behavior, such as
scoping [7], model checking [29], dynamic checking of required interactions and
constraints between different contexts [21], and a generalized layer activation
mechanism [32]. Use of such constructs significantly affects the modularity of
the obtained implementation, and research into COP shows a number of cases
where COP can modularize variations of context-dependent behavior that are
difficult to modularize using other approaches.

However, it is unclear when COP should be used in general. In particular,
there are no systematic methodologies to determine a method to implement
context-dependent behavior and the associated dynamic changes, which signifi-
cantly affect software modularity and should be determined during modeling and
design. Furthermore, there are no systematic methods to determine an appropri-
ate activation mechanism to implement dynamic changes in behavior. A number
of COP mechanisms have been proposed to date [7], [9], [17], [21–23], [25], [26],
[29], [47], [51]. An appropriate mechanism must be selected from among them
to implement a design artifact.

This paper presents a study of our software development methodology, context-
oriented software engineering (COSE), that organizes the specifications of con-
texts and the dependent variations of behavior.5 An overview of the COP devel-
opment process, even if it is not in depth, can lead to further research on each
stage of the development process. In particular, we answer the following research
questions (RQs) based on this methodology.

RQ1. How should contexts and behavior depending on the contexts be elicited
from the requirements?

4 Some COP languages do not provide a linguistic construct to pack such implementa-
tions as a single unit. However, this is not a significant difference. In the remainder
of this paper, we refer to a set of functions (methods) annotated with the same
“conditions” for dispatch as a layer irrespective of whether they are packed into a
single unit.

5 This approach is based on Jacobson’s object-oriented software engineering
(OOSE) [27]. We refer to our approach as “COSE” to make its connection to OOSE
clear.



RQ2. When should we apply COP rather than other development methods?
RQ3. How do COP mechanisms support predictable control of changes in context-

dependent behavior?

We answer RQ1 and RQ2 by providing a systematic way to identify contexts
and determine an implementation method for context-dependent behavior dur-
ing modeling and design. This systematic approach is based on several principles,
which are validated through three case studies. To answer RQ3, we provide a
mechanized modular mapping from a specification developed by COSE to an im-
plementation in the ServalCJ COP language6. ServalCJ provides a generalized
layer activation mechanism that supports all existing COP mechanisms.

Methodology. Based on the use-case-driven approach [27], COSE represents
the requirements for a context-aware application using contexts and context-
dependent use cases. A context is represented in terms of Boolean variables that
determine whether the system is in that context7. A context-dependent use case
is a specialization of another use case that is applicable only under specific con-
texts. From these requirements, COSE derives a design model that can be trans-
lated into a modular implementation. This design method classifies variations of
context-dependent behavior into those implemented by appropriate mechanisms,
such as layers in COP and other traditional mechanisms, such as class hierar-
chies and if statements. This classification drives mechanized mapping from
requirements to implementation. We selected ServalCJ as the implementation
language because it provides a generalized layer activation mechanism, which,
to the best of our knowledge, supports all existing COP mechanisms. This map-
ping ensures that each specification in the requirements is not scattered over
multiple modules in the implementation, and each module is not entangled with
multiple requirements.

Case Studies. We conducted three case studies of different context-aware appli-
cations to demonstrate the effectiveness of our approach. The first is a conference
guide system, which serves as a guide for an academic conference, including man-
agement of an attendee’s personal schedule, navigation help inside the venue and
around the conference site, and a social networking service function, such as a
Twitter client. The second is CJEdit, a program editor that provides different
functionalities relative to cursor position. This example, which was first intro-
duced by Appeltauer et al. [8], is a well-known COP application. The third is
a maze-solving robot simulator that provides a number of variations of context-
dependent behavior, such as adaptive user interfaces and adaptive robot behav-
ior. In these case studies, we successfully organized context-related specifications
6 https://github.com/ServalCJ/pl
7 Keays also proposed COP [35], where a context is a named identifier (e.g., location)

that identifies the type of open terms (holes in the code skeleton) that are filled at
runtime with pieces of code corresponding to a specific context value (e.g., location
in ”Tokyo”). This paper is based on Hirschfeld’s COP [26] where a context is rep-
resented as a layer that dynamically takes two states, i.e., active and inactive, and
thus can be represented as a Boolean variable.



by applying COSE and directly mapped these specifications to their implemen-
tations in ServalCJ.

To examine existing language features and discuss the features that make
the COSE methodology effective, we analyze linguistic constructs from several
existing implementation techniques (including non-COP techniques). A notable
finding is that, while most existing COP languages directly specify the execution
point when the corresponding context becomes active, in the case studies there
are a number of situations where the use of the implicit layer activation mecha-
nism that indirectly specifies layer activation using conditional expressions would
be preferred. Although currently the implicit layer activation mechanism may
not function effectively, it can be an effective tool to independently implement
the dynamic changes of behavior specified in the requirements.

Research Roadmap. Although the case studies indicate that our approach is
promising, we also identify a number of interesting open issues, which comprise
our future research roadmap. First, to address scattered context-dependent be-
havior in requirements of the system-to-be written in inconsistent formats, we
plan to develop a systematic method to identify contexts. Second, our approach
is based on use cases; however, it is also desirable to explore how similar ap-
proaches can be applied when use cases are not appropriate to analyze require-
ments. Third, we have identified issues in the evaluation of our methodology.
Fourth, since there is a performance issue in the implicit layer activation, we
plan to investigate the optimization of implicit activation. Furthermore, ana-
lyzing when event-based activation (i.e., the way in which the execution points
where context activation occurs are explicitly represented) is expected to be use-
ful and desirable. Finally, since the case studies used in this paper are standalone
and conducted using a single language, it is also desirable to study how the ap-
proach can be applied to more sophisticated environments, e.g., distributed,
multi-language environments.

Organization. The remainder of this paper is organized as follows. In Section
2, we identify the difficulties in the development of context-aware applications
and discuss the limitations of existing approaches. In Section 3, we elaborate
the research questions and list the principles that will be validated through the
case studies. In Section 4, we illustrate the systematic organization of context-
dependent requirements and their classification into those implemented by ap-
propriate linguistic mechanisms. In Section 5, we provide mechanized mapping
from the artifacts obtained by COSE to modular implementation in existing
COP mechanisms. In Sections 6 and 7, we show other case studies and provide
an informal evaluation of COSE using these case studies, respectively. Finally,
Section 8 concludes the paper and presents our future research roadmap.

Differences from Previous Work. This paper is an extended version of our pre-
vious papers [31, 33]. In addition to the identification of context-dependent be-
havior whose activation should be controlled by COP mechanisms, this paper
addresses the following issues:



Identification of the subject of a particular layer activation. While our
previous papers implicitly considered that layer activation globally affects the
whole application, this paper identifies other cases wherein layer activation
affects a particular object or control-flow.

Selection of different layer activation mechanisms. This paper discusses
the selection criteria for different layer activation mechanisms, which was not
discussed in our previous papers. Existing layer activation mechanisms differ
in scope and duration, and we should select the most suitable mechanism.

These issues are discussed using the maze-solving robot simulator case study,
which also considers the case where a context-dependent use case appears in the
top-level, thereby leading to refinement of principles.

2 Motivation

We explain the motivation to develop a new context-oriented software develop-
ment methodology by introducing an example of a context-aware application
and explaining the difficulties in the development of context-aware applications
and the limitations of existing approaches.

2.1 Context-aware Application Example: Conference Guide System

The conference guide system serves as a guide for an academic conference. This
system, which provides the conference program, schedule management, and nav-
igation help inside the venue and around the conference site, is implemented on
an Android smartphone. The guide system also has a Twitter that attendees can
use to comment on talks presented at the conference. This system has several
context-related behavioral variations.

– The conference program is provided online. The user can view the online pro-
gram on an Android smartphone. The program is downloaded and cached
in a local database in case the online version becomes unavailable. In the
program, the user can select the sessions they will attend. The selected ses-
sions are listed in the personal schedule. If sessions have not been selected,
the listing cannot be accessed.

– The system provides a map function. When the user is within the conference
venue, the map provides a floor plan of the venue. When the user is outside
the venue, a map of the area around the conference site is provided. This
area is updated when the user’s position changes. Positioning is based on
GPS or the Wi-Fi connection. If the system cannot determine whether the
use is outdoors or indoors, it provides a static map of the area around the
conference site.

– The system provides a Twitter client, which is available only when the In-
ternet is available.



Fig. 1. Use case diagram for the conference guide system

A use case diagram for the conference guide system is shown in Fig. 1. In
addition to the initial “Startup” use case, there are four use cases that involve
user interactions. “Viewing the program” includes “Updating the schedule,” i.e.,
the user selects sessions to attend, and “Using a map” includes “Moving,” i.e.,
the user moves, and the new position is detected by the positioning system.

2.2 Difficulties

Even though this is a simple example, a number of difficulties in the develop-
ment of context-aware applications can be identified. Before discussing these
difficulties, we note that the definition of a context tends to be too general
for identifying context-dependent behavior. Therefore, we first summarize three
viewpoints that should be considered when identifying contexts.

Requirements Variability. A context-aware application changes behavior with
respect to the currently executing context, i.e., there are a number of variations
of behavior depending on the context. Thus, we need to identify contexts and
the related requirements variability. For example, in the conference guide system,
contexts such as outdoors, availability of the list of selected sessions, and avail-
ability of the Internet can be identified. However, identification of contexts is not
trivial. After the identification of the outdoor context, it is unclear whether we
should also identify the indoor context, or represent it by means of the outdoor
context (i.e., !outdoors).

Different Levels of Abstraction. Contexts have different abstraction levels, and
contexts at the abstract level consist of multiple concrete contexts. For example,
the availability of positioning systems depends on hardware specifications, such
as the availability of GPS and/or wireless LAN functions. Thus, we must define



contexts precisely in terms of the target machine. This multiple dependency
leads to difficulty in defining precisely when the variation of behavior switches
at runtime because there may be a number of state changes in the target machine
that trigger a context change. Furthermore, some executing hardware states may
barrier or guard the change of abstract contexts.

Multiple Dependencies among Contexts and Behavior. We must also analyze de-
pendencies between contexts and variations of behavior carefully because some
variations depend on multiple contexts. For example, in the conference guide
system, if we identify outdoor and indoor situations as different contexts, the
display of a static map is dependent on such contexts because this behavior is
executable only when the system cannot determine whether the user is outdoors
or indoors. Generally, multiple dependency depends on how we identify contexts,
and multiple contexts may barrier or guard the execution of context-dependent
behavior. This dependency becomes more complicated when we consider differ-
ent levels of context abstraction.

We assume that contexts are identified based on these viewpoints. In our
methodology, we address the following difficulties in the development of context-
aware systems.

Proper Design and Implementation. We must select an appropriate method
of design and implementation. In particular, a number of context-dependent
requirements are volatile and crosscut multiple use cases. Therefore, such re-
quirements require modular implementations to hide details that are likely to
change [41].

Requirements Volatility in Context Specification. Technologies for sensing con-
text changes are very complex. Such technologies evolve continually, which indi-
cates that requirements specifications for context sensing are subject to change.
For example, it seems initially appropriate to define the outdoor/indoor contexts
based on the status of the GPS receiver. However, in future, this definition may
need to be based on the status of air pressure sensors or other technologies, such
as an RFID receiver, that are not currently implemented in smartphones.

Crosscutting of Contexts in Multiple Use Cases. In context-aware applications,
a number of contexts are scattered over multiple use cases. For example, in the
conference guide system, the conference program is downloaded through the In-
ternet (to let the user access an up-to-date program) only when the Internet is
available. Similarly, the availability of the Twitter client depends on the avail-
ability of the Internet. Thus, the context “the Internet is available” crosscuts two
use cases, “Viewing the program” and “Using Twitter.” A systematic way to de-
termine such a situation and select the appropriate implementation mechanism
for this specification is necessary.

Managing Dynamic Changes. Predictable control of contexts and behavioral
changes is required, and this is a challenge for the following reasons.



Crosscutting of Behavior Changes. One of the most important properties of
context-aware applications is that they change behavior at runtime. Thus, we
need to identify when a behavior variation switches to another variation. How-
ever, as discussed above, a behavior variation may depend on multiple (abstract)
contexts, and each context may depend on a number of concrete contexts. Fur-
thermore, changes of such concrete contexts are scattered over the execution of
the application. Since context specifications are subject to change, it is desirable
to encapsulate them.

Interferences Between Behaviors. A situation wherein dynamically activated
behaviors can interfere with other behaviors may occur. Such interference may
result in unpredictable behavior and should be avoided. Determining whether
such interference exists is also a challenge in the development of context-aware
systems.

Translation to Modular Implementation. We must carefully trace which
requirements are implemented by which modules. It is also desirable that a mod-
ule in the implementation only serves a single requirement and is not entangled
by several requirements. Thus, to support modularity, it is desirable that there
be injective mapping from the specification to the implementation.

2.3 Problems in Existing Approaches

Although there have been intensive research efforts to improve each stage of
development of context-aware applications, few attempts have been made to
develop a methodology to organize the whole development process.

A number of COP languages have been developed. A family of COP languages
provides a linguistic construct called a layer to pack related context-dependent
behavior into a single module [7], [9], [17], [25]. Other COP languages empha-
size representing the dependency between contexts [21, 22] and do not provide
“layers,” though, in this paper, this difference is not significant, and we refer
to a set of functions (methods) annotated with the same “contexts” as a layer,
irrespective of whether they are packed into a single module.

Compared to research into programming languages, little research effort has
been devoted to systematizing the design of context-oriented programs. For ex-
ample, the process of discovering layers from requirements is unclear. Determin-
ing when the use of layers is preferable to the use of existing object-oriented
mechanisms and if statements in order to implement context-dependent behav-
ior also remains unclear. Cardozo et al. proposed the feature clouds programming
model [14], which equates layers (i.e., “behavioral adaptations”) to features in
feature-oriented software development (FOSD) [4]. Although this model clari-
fies correspondence between features and COP and advances the feature model
by introducing dynamic adaptation of features by means of COP mechanisms,
it does not clarify the process of discovering contexts and layers. Context petri
nets (CoPNs) [13] were proposed to formalize the semantics of COP, in particular



the semantics of multiple context activations in Subjective-C [21]. A tool based
on CoPNs was developed to analyze consistency in the activation of contexts.
However, this tool does not target the discovery of contexts and layers.

There are a number of software development methodologies. Object-oriented
methodologies are useful for discovering objects and classes through requirements
analysis. Aspect-oriented software development (AOSD) methodologies [28], [43]
are useful for determining and modularizing crosscutting concerns. FOSD [4]
maps feature diagrams [34] to implementation. Feature diagrams, which are ob-
tained by analyzing the software to be developed, are useful for analyzing depen-
dencies among the features from which the software is constructed. Even though
these methodologies provide a good starting point to consider how to develop
context-aware applications, they do not focus on solutions for the aforemen-
tioned difficulties. We must extend existing methodologies to identify contexts
and dependent behavior systematically to provide predictable control of changes
in context-dependent behavior.

Recently, a number of approaches to discover, analyze, and implement con-
texts and variations of dependent behavior have been investigated. A number of
requirements engineering methods [3], [19], [38, 39], [45, 46], [49] primarily focus
on the discovery and analysis of (abstract) contexts and the variations of behav-
ior that depend on them. These requirements engineering methods do not provide
systematic ways to select implementation mechanisms for context-dependent be-
havior. Henrichsen and Indulska proposed a software engineering framework for
pervasive computing [24]. However, they did not provide systematic ways to
manage volatile requirements for concrete levels of context and implement them
modularly. Specifically, they did not identify a set of variations that comprises
a single module. Frameworks and libraries for context-aware applications pro-
vide context-aware software components and thus enhance reusability, which
addresses some of the difficulties mentioned above [1], [12], [15], [44]. However,
such frameworks and libraries are domain specific, and few general solutions for
context-aware applications are provided.

3 Research Questions and Principles

To organize the software development methodology for context-aware applica-
tions, we provide three research questions. To answer these questions, we also
list three principles and validate them through case studies.

3.1 Research Questions

We answer the following research questions.

RQ1. How should contexts and behavior depending on the contexts be elicited
from the requirements?

This research question, which has been partially answered by existing ap-
proaches, is the most fundamental. To implement context-dependent behavior,



we must first determine what the contexts are. However, this identification of
contexts should be organized as input for a decision about the design of modules
made in the subsequent development stage. The existing requirements engineer-
ing methods explained above do not have such a concern, and we provide the
answer for RQ1 from this perspective.

RQ2. When should we apply COP rather than other development methods?

There are a number of linguistic constructs to implement context-dependent
behavior, and we must select the appropriate construct to realize better mod-
ularity. In particular, existing work into COP has not provided an answer for
when we should use COP.

RQ3. How do COP mechanisms support predictable control of changes in context-
dependent behavior?

A number of COP mechanisms, in particular layer activation mechanisms,
have been proposed, and they support predictable control of behavioral changes
with respect to context changes by, e.g., preventing us from simultaneously ac-
tivating conflicting layers. Each mechanism has its own advantages and disad-
vantages, and there are no methods to select the most appropriate mechanism.

3.2 Principles

As the first step to provide the answers for these research questions, we identify
the following principles to identify contexts and context-dependent behavior. We
then developed the context-oriented software development methodology, COSE,
which is explained in the following sections.

Principle 1 Factors that exist outside a particular unit of computation and
dynamically change the behavior of that unit are candidates for contexts.

A context is a factor that changes the behavior of something on which we
focus. Thus, to identify contexts, it is good to begin by looking for factors that
change the behavior of such a “something,” which is also identifiable under the
specific computation model (e.g., an object in OO programming languages or a
function in functional programming languages).

Note that this principle is revised from a previous description [33] by consid-
ering the unit of computation that is affected by the contexts. This consideration
leads to proper selection of layer activation mechanisms in the implementation
(e.g., selecting global activation rather than per-instance activation). Further
discussion is provided in Section 4.

Principle 2 Each factor that dynamically changes the system’s behavior is rep-
resented as a variable, and an activation condition for a context that determines
whether the system is in that context is a logical formula comprising those vari-
ables.



In many cases, a factor that changes system behavior has only two states. For
example, whether a user is outdoors has only two states, yes or no. The avail-
ability of a network also has two states, available or unavailable. Battery level
can also have two states, low or high. Each of these factors can be represented
as a Boolean variable.

Sometimes, such a factor is composite, which implies that a context can be
represented as a logical formula comprising a set of factors that can be repre-
sented as a Boolean variable. This principle fits well with existing COP languages
wherein a context consists of subcontexts, such as in Subjective-C [21], or a layer
activation is triggered by a composition of other layer activations [16], [30].

In some cases, such factors may have more than two states. For example,
a location may take a number of values such as “Tokyo,” “Lugano,” etc. In
such cases, we consider each value as a context. For example, we consider the
context “whether the user is in Tokyo.” This may result in quite a large number
of contexts (e.g., we may list thousands of cities), and it is difficult to prepare
such a listing. Generally, COP requires pre-listing of behavior variations, and a
large number of contexts are unlikely to be modularized using COP but can be
implemented using other techniques, such as abstraction over parameters.

In some COP languages like Subjective-C, a context is not a Boolean but has
an actual activation count. The above principle does not rule out such languages.
A context is identified in terms of an activation condition that is a trigger for the
context-dependent behavior. This activation condition should be Boolean even
when a context has an actual activation count.

Principle 3 If multiple variations of context-dependent behavior share the same
context and variations are not specializations8 of the same behavior, they should
be implemented using a layer.

This principle explains the situation wherein the same context is scattered
over a number of behavioral variations in the system. A layer in COP can modu-
larize such crosscutting behavior. In contrast, if the context affects only a single
behavior variation or such variations are a specialization of the same behavior,
we may also consider other implementation mechanisms, such as if statements
and method dispatching in object-oriented programming.

4 Context-Dependent Requirements and Design

We propose COSE, a use-case-based methodology for context-oriented soft-
ware engineering. It represents the requirements for a context-aware applica-
tion using contexts and context-dependent use cases. A context is represented
as a Boolean formula that represents whether the system is in that context. A
context-dependent use case is a specialization of another use case applicable only
in some specific contexts.
8 By “specialization,” we mean a specialization relationship that appears in class and

use case hierarchies, i.e., a specialization consists of more details than its parent.



Based on this requirements model, COSE further derives a design model
that can be translated into a modular implementation (Section 5). COSE is
based on the use-case-driven approach. It provides a systematic mapping from
context-dependent use cases to modules provided by existing COP languages,
i.e., layers, just as the AOSD method proposed by Jacobson where each use
case is implemented using an aspect [28]. Our design method classifies context-
dependent behavior variations into those implemented by appropriate imple-
mentation mechanisms, such as layers in COP, and those implemented by other
traditional mechanisms, such as class hierarchies and if statements. We identify
the following design constituents.

1. Groups of context-dependent use cases, each of which share the same con-
texts. Context-dependent use cases in the same group simultaneously be-
come applicable when the contexts hold. To modularize dynamic behavioral
changes, they should be modularized into a layer in COP languages.

2. Classes participating in use cases by applying the standard use-case-driven
approach.

3. Detailed specification of contexts based on the identified classes and frame-
works on which the system depends.

In the following sections, we overview each step of COSE using the conference
guide system example introduced in Section 2.

4.1 Identifying Contexts and Context-Dependent Use Cases

The first step of COSE is to identify contexts and context-dependent use cases.
We extend the original use-case-driven method [27] with context-dependent use
cases that are applicable only in specific contexts. By observing use cases, we can
see that a number of behavior variations of some units of the system exist with
respect to some outside conditions, which are subject to change at runtime. As
mentioned in Principle 1, such conditions are candidates for the variables that
determine the current context. For example, in the conference guide system,
we identify the use case “Startup” where the user starts the system. This use
case includes the behavior of the whole application initializing several parts
of the system, and has two sub-use-cases, i.e., “Startup scheduler” (prepares
the menu for the user’s schedule) and “Startup Twitter” (prepares the menu
for the Twitter client). All these sub-use-cases are applicable only when some
conditions hold, such as the availability of the user’s schedule and availability
of the Internet. We can identify these conditions as candidates for contexts that
change the behavior of the application. In the remainder of this paper, we refer to
a context that changes the behavior of the entire application as a global context.

Another example is the “Using a map” use case, which is specialized to three
use cases: “Using a city map,” “Using the floor plan,” and “Using a static map.”
These are applicable when the user is outdoors, when the user is indoors, and
when the system cannot determine the user’s location, respectively. Again, these
specializations affect the whole application; thus, these user’s situations are also
candidates for global contexts.



Table 1. Listing of variables: the first stage

subject name description

global hasSchedule the user has registered at least one session or not
hasNetwork the Internet is available or not
outdoors the situation is outdoors or not
hasPositioning the positioning systems are available or not
batteryLow the battery level is low or not

Table 2. Refined listing of variables

subject name description

global hasSchedule the user has registered at least one session or not
hasNetwork the Internet is available or not
outdoors the situation is outdoors or not
indoors the situation is indoors or not
batteryLow the battery level is low or not

Generally, a context in our model is defined in terms of a set of Boolean
variables that represents the condition of the subject of the behavior. We list
the candidates for variables in the conference guide system in Table 1. In this
table, we represent the subject (the whole application) as global. Note that this is
the very early stage of listing candidates for variables that are directly observable
from the behavior of the system-to-be, and we introduce one important criterion
used to refine this listing.

Each variable should not depend on other variables because such depen-
dencies imply that a variable can be represented in terms of others.

A context should consist of a set of orthogonal variables; if they are not orthog-
onal, they should be exclusive. This criterion is required to keep the conditions
constructed by these variables simple and ensure the completeness of contexts.
Intuitively, being orthogonal means that every combination of values is possible.
For example, in Table 1, hasSchedule, hasNetwork, outdoors, and batteryLow
are orthogonal. However, outdoors and hasPositioning are not orthogonal be-
cause the combination outdoors && !hasPositioning is impossible (we assume
that the conference guide system determines the outdoors situation using posi-
tioning systems). If it is not possible to represent such variables using just one
single Boolean variable, then we should reformulate them as exclusive variables,
which help analyze dependencies between layers. Thus, the variables outdoors
and hasPositioning are divided into three exclusive variables representing out-
doors, indoors, and no positioning is available, and the final one is exactly the
case where the system cannot determine whether it is outdoors or indoors. The
refined listing of variables is shown in Table 2.

Note that, as discussed in Section 2, requirements for context changes are
often volatile. Thus, at this stage, it is preferable to keep contexts abstract to
be prepared for future requirements changes.



Table 3. Use cases for the conference guide system

name activation condition

Startup
Startup scheduler hasSchedule
Startup Twitter hasNetwork

Viewing the program
Viewing the online program hasNetwork

Updating the schedule
Using a map

Using a city map outdoors
Using the floor plan indoors
Using a static map !outdoors && !indoors

Moving
Moving when outdoors outdoors

Viewing the schedule hasSchedule
Using Twitter hasNetwork

Updating timeline frequently !batteryLow
Updating timeline infrequently batteryLow

A context-dependent use case is annotated with a logical formula that con-
sists of the set of variables identified above. We call this formula an activation
condition for that use case. Context-dependent use cases for the conference guide
system are summarized in Table 3. The names of use cases are listed in the left
column, and activation conditions that represent when the use case is applicable
are listed in the right column. A name with an indent represents that this use
case is a specialization of the use case listed in the above row in italics. A use
case with an empty condition is context independent.

4.2 Grouping Context-Dependent Use Cases

A situation where multiple use cases are applicable in the same context implies
that the context-dependent behavior is scattered over those use cases. To mod-
ularize dynamic behavioral changes, these context-dependent use cases should
be grouped into a single module that is enabled (activated) when the condition
holds and disabled (deactivated) when the condition does not hold. This is the
situation Principle 3 explains, which is rephrased in terms of the use case driven
method as follows. If multiple context-dependent use cases that are not special-
izations of the same use case share the same context, their behavior should be
implemented by using a layer.

Table 4 lists the groups of context-dependent use cases. We can see that three
contexts, i.e., hasSchedule, hasNetwork, and outdoors, are assigned to multiple
context-dependent use cases. Thus, these use cases are grouped into a layer.
We rename such contexts by capitalizing the first character (e.g.,HasSchedule,
HasNetwork, and Outdoors), following naming traditions for layers in COP lan-
guages.



Table 4. Groups of context-dependent use cases

activation condition use case

hasSchedule Startup scheduler
Viewing the scheduler

hasNetwork Startup Twitter
Viewing the online program
Using Twitter

outdoors Using a city map
Moving when outdoors

indoors Using the floor plan
!outdoors && !indoors Using a static map
hasNetwork && !batteryLow Updating timeline frequently
hasNetwork && batteryLow Updating timeline infrequently

Table 5. Classes for each layer

layer classes position

HasSchedule MainActivity, Schedule class-in-layer
HasNetwork MainActivity, Program, Twitter class-in-layer
Outdoors Map layer-in-class
Indoors Map layer-in-class
StaticMap Map layer-in-class

We must also consider how to treat the remaining context-dependent use
cases. Even though they do not share the condition with other use cases, some
still have a relationship with other layers in that a subterm of their condition is
the condition that activates the layer. For example, the condition for “Using a
static map” includes the subterm outdoors, which is the condition that activates
the layer Outdoors. To control dynamic behavior changes uniformly, activation
of “Using a static map” should be managed in the same way as Outdoors. Thus,
we also identify the context-dependent use case “Using a static map” as a layer,
i.e., StaticMap. Similarly, we identify the context-dependent use case “Using the
floor plan” as a layer, i.e., Indoors.

So far, we have identified at least five layers. We do not identify other use
cases, e.g., “Updating timeline frequently” and “Updating timeline infrequently,”
as context-dependent. They are conceptually the same as alternative use cases,
and the behavior variations should be so local that each of them can be imple-
mented within a single class. Thus, they can be implemented by traditional OO
mechanisms, such as inheritance and if statements.

4.3 Designing Classes

Each layer in COP consists of (partial) definitions of classes. By extending the
original use-case-driven approach in a straightforward manner, we can identify
classes and methods that participate in each layer.



First, from use case scenarios, we identify the names of classes. Since this
is a straightforward adaptation of the original use-case-driven approach, we do
not describe the details but briefly illustrate the result. Since the conference
guide system is an Android application, each view of the application should be
implemented as a subclass of the android.app.Activity class from the Android
SDK framework9. The use case “Startup” identifies the MainActivity class,
which will implement the main view of the application. Similarly, in the use cases
“Viewing the program,” “Using a map,” “Viewing the schedule,” and “Using
Twitter,” we identify an Activity class for each, i.e., Program, Map, Schedule,
and Twitter, respectively. There are some other helper classes; however, only
the Activity classes participate in the context-dependent behavior.

Table 5 summarizes this assignment of classes for each layer. While the layers
HasSchedule and HasNetwork consist of multiple classes, other layers consist of
just the Map class. This table also shows the preferred ways to allocate layers.
There are two alternative ways to allocate layers, i.e., the class-in-layer style
allocates the (partial) classes that implement the context-dependent behavior in
the layer, and the layer-in-class style allocates the layer within the class. When a
layer is scattered over several classes, the class-in-layer style is preferable. When
a class is scattered over several layers, the layer-in-class style is better. Note that
some COP languages support only one style [6]. In this case, we must conform
to the style provided by the implementing language.

4.4 Designing Detailed Specification of Contexts

After designing classes, we can determine a more concrete representation of the
contexts. While it is desirable to keep contexts abstract to allow changes in the
details, we must also derive information about how they should be implemented.
In particular, there are a number of layer activation mechanisms, and we must
select an appropriate mechanism. Furthermore, as explained later, specifications
for some contexts are complex; thus, we must identify more granular contexts
that comprise the specified context.

Section 4.1 defines that the context hasSchedule holds when the user has
selected at least one session to attend from the conference program. In terms
of the Android SDK framework, this is represented as “a query on the SQLite
instance returns at least one result.” Thus, we define when the layer HasSchedule
becomes active as follows, which is read as “the getCount method on the result
of a query on an SQLite instance (i.e., db) returns an integer value that is greater
than 0.”

HasSchedule(SQLite db) :: db.query(..).getCount() > 0

Similarly, by inspecting Android SDK framework specifications, we can define
when the layer HasNetwork becomes active as “the result of the call of the
getDetailedState method on the result of the call of getActiveNetworkInfo
on a ConnectivityManager instance (i.e., cm) is equal to the result of the access
to the static field NetworkInfo.DetailedState.CONNECTED.”
9 http://developer.android.com/sdk/



HasNetwork(ConnectivityManager cm) ::
cm.getActiveNetworkInfo().getDetailedState() ==
NetworkInfo.DetailedState.CONNECTED

The cases for the outdoors and indoors contexts are more complex. They are
affected by multiple states of the running machine. First, to determine whether
the user is outdoors, the GPS device should be available. Second, the confer-
ence guide system determines whether the user is in the conference venue using
the SSID of the connecting wireless LAN, which means that the wireless LAN
connection should be available. Thus, activation of the Outdoors and Indoors
layers is determined in terms of more fine-grained contexts.

Outdoors :: !WifiAvailable && GPSAvailable
Indoors :: WifiAvailable

In other words, Outdoors and Indoors are composite layers [30].
The context WifiAvailable is defined as follows assuming that isWifiConnected

is an application method that returns true when the wireless LAN is connected
and its SSID is some pre-defined value.

WifiAvailable :: Config.isWifiConnected()==true

The context GPSAvailable is defined as follows using the isProviderEnabled
method provided by the framework.

GPSAvailable :: LocationManager.isProviderEnabled(
LocationManager.GPS_PROVIDER) == true

All these concrete representations of contexts reveal that they are condi-
tionals and can be implemented directly using a layer activation mechanism
triggered by conditionals.10 In Section 6.1, we show cases where other activation
mechanisms are selected.

5 Mapping to Implementation

This section demonstrates how the design artifacts developed by COSE are sys-
tematically translated into a program with existing COP mechanisms. Generally,
a layer identified in the previous section is implemented using a corresponding
mechanism provided by the COP language chosen as an implementation lan-
guage, such as a layer in ContextJ, a set of methods that share the same context
in Subjective-C, or a context trait [23]. The detailed specification of contexts
is then mapped to the corresponding layer activation mechanisms provided by
that language.

In this paper, we choose ServalCJ [32] (a successor of EventCJ [29]) as the
implementation language because it provides a generalized layer activation mech-
anism that supports most existing COP mechanisms. A context in ServalCJ is
10 For COP languages that do not provide layer activation by conditionals, we must

provide a workaround to implement such conditionals.



defined as a term of temporal logic with a call stack, which can represent most
existing layer activation mechanisms. For example, it can specify two events,
one of which activates the corresponding context and the other which deacti-
vates that context (as in EventCJ’s event-based layer transition). ServalCJ can
also specify a control flow under which the corresponding context is active (as in
JCop [9]). ServalCJ can select the target where such context specifications are
applied, and that target can be a set of objects (per-instance activation) or the
whole application (global activation). Furthermore, ServalCJ supports implicit
activation, where activation of a context is indirectly specified using a condi-
tional expression. As shown in the following sections, our methodology clarifies
that this mechanism is notably useful for modular implementation.

A ServalCJ program comprises a set of classes, layers, and context groups
where dynamic layer activation and the target for this activation are specified.
The layers and classes identified in Sections 4.2 and 4.3 are implemented directly
in layers and classes in ServalCJ, and the context specifications in Section 4.4
are implemented directly in context groups in ServalCJ. We explain the details
in the following sections.

5.1 Implementing Layers

As in other COP languages, layers and partial methods comprise the mechanism
for modularization of context-dependent behavior in ServalCJ.

Fig. 2 shows an example of layers and partial methods in ServalCJ for the
main view of the conference guide system. The MainActivity class extends
the Activity class provided by the Android SDK framework and overrides
the onResume method, which is called from the framework when this view re-
sumes the execution. This method displays the main menu of the conference
guide system as buttons for viewing the conference program and using the
map. MainActivity also declares two layers, i.e., HasSchedule and HasNetwork.
These layers define the context-dependent behavior of MainActivity11. Has-
Schedule defines the behavior when there is at least one session that the user
would like to attend, and HasNetwork defines the behavior when the Internet
is available. These layers extend the original behavior of onResume by declaring
after partial methods, which are executed just after the execution of the original
method when the respective layer is active12. For example, when HasSchedule
is active, onResume also displays the menu button to check the user’s schedule.

11 Although Table 5 shows that it is preferable to implement these layers in the class-
in-layer style, in Fig. 2, they are implemented in the layer-in-class style because
ServalCJ currently only supports this style.

12 There are also before and around partial methods that execute before the original
method and instead of the original method, respectively, when the respective layer
is active.



1 class MainActivity extends Activity implements View.OnClickListener {

2 private GridLayout layout;

4 @Override

5 protected void onResume() {

6 super.onResume();

7 layout = new GridLayout(this);

8 layout.addView(makeMenu("program", "Program"));

9 layout.addView(makeMenu("map", "Map"));

10 }

12 private Button makeMenu(String tag, String label) {

13 ..

14 }

16 layer HasSchedule {

17 after protected void onResume() {

18 layout.addView(makeMenu("schedule", "Schedule"));

19 }

20 }

21 layer HasNetwork {

22 after protected void onResume() {

23 layout.addView(makeMenu("twitter", "Twitter"));

24 }

25 }

26 }

Fig. 2. Layers and partial methods in ServalCJ

5.2 Implementing Layer Activation

In COP languages, layers can be activated and deactivated dynamically, and
ServalCJ provides declarative ways to perform such layer operations. These dec-
larations are obtained directly from the design of detailed contexts (Section 4.4).

First, detailed context definitions are grouped based on the variables and
contexts to which these definitions refer. We refer to such group as a context
group. For example, HasNetwork refers to an instance of ConnectivityManager
(and this is the only context that refers to that instance); thus, this context
definition makes up one context group.

Fig. 3 shows a context group that is responsible for activating HasNetwork.
The first line specifies the name of the context group, i.e., Network, followed
by a specification of how this context group is instantiated. Since the con-
text HasNetwork is identified as global (Section 4), this context group is de-
clared as global, as specified by the modifier global. In line 2, the perthis
clause specifies that the instance of Network is associated with an instance of
ConnectivityManager (as specified using the this pointcut), which can be ref-
erenced through the variable cm.



1 global contextgroup Network(ConnectivityManager cm)

2 perthis(this(ConnectivityManager)) {

3 activate HasNetwork if(

4 cm.getActiveNetworkInfo().getDetailedState()

5 ==NetworkInfo.DetailedState.CONNECTED);

6 }

Fig. 3. Context group responsible for activation of HasNetwork

1 global contextgroup Schedule(MainActivity main)

2 perthis(this(MainActivity)) {

3 activate HasSchedule if(main.scheduleCounter > 0);

4 }

Fig. 4. Context group responsible for activation of HasSchedule

Line 3 declares when the layer HasNetwork is active using an activate decla-
ration. A when clause specifies the condition when the layer is active. There are
a number of ways to specify this condition, e.g., specify the join points where
that context becomes active and inactive, specify the control flow under which
that context is active, and specify the condition when that context is active. In
Fig. 3, we use the if expression to specify the condition. With the if expression,
we can use any Boolean-type Java expression. In this case, we simply copy the
expression from the definition in Section 4.4.

We can declare a context group for HasSchedule in a similar way. One subtle
issue is that the definition of HasSchedule contains an expression that requires
local database access. If the developer has performance concerns, this definition
is not preferred because this condition is tested at every call of the layered
method (i.e., a method that consists of a set of partial methods) in ServalCJ. In
our case, the definition of HasSchedule is refined to access the counter variable
that is introduced to MainActivity and updated when the local database is
updated as follows.

HasSchedule(MainActivity main) :: main.scheduleCounter > 0

The definition of the context group for HasSchedule is shown in Fig. 4.
The remaining layers are Outdoors, Indoors, and StaticMap. Since they

share the same set of context references, they are grouped into one context
group, which is shown in Fig. 5. Since this context group does not refer to any
instance variables, it specifies no perthis and pertarget clauses. This context
group is a singleton, i.e., it is created when execution initializes and remains
until the application terminates.

Lines 2 and 3 define the named contexts WifiAvailable and GPSAvailable,
which make it possible to refer to the activation conditions from several activate
declarations that are used to specify when Outdoors and Indoors are active.



1 global contextgroup Situation {

2 context WifiAvailable is if(Config.isWifiConnected()==true);

3 context GPSAvailable is if(LocationManager.isProviderEnabled(

4 LocationManager.GPS_PROVIDER)==true);

5 activate Outdoors when !WifiAvailable && when GPSAvailable;

6 activate Indoors when WifiAvaileble;

7 activate StaticMap when !Outdoors && when !Indoors;

Fig. 5. Context group responsible for activation of Outdoors, Indoors, and StaticMap

The conditions declared by these named contexts are directly obtained from the
definitions given in Section 4.4. Activate declarations for Outdoors, Indoors,
and StaticMap are also obtained from the definitions given in Section 4.4. Note
that we can use the logical operators ||, &&, and ! to compose propositions in
the when clauses.

6 Other Case Studies

This section demonstrates two other case studies using COSE. The first is con-
ducted to investigate the applicability of COSE to an existing, well-known COP
application. The second study shows more interesting cases, which are not dis-
cussed in our previous paper [33], where different activation mechanisms with
respect to the scope and duration are applied. Among these mechanisms, we
should select the most suitable mechanism.

The first case study develops the CJEdit program editor that is first imple-
mented by Appeltauer et al. [8]. Since the original implementation of CJEdit
exists, we do not perform this case study from scratch. Instead, we use the orig-
inal implementation as a prototype for this case study. This case study shows
that COSE is applicable to the development of a well-known COP application.
Details of this case study are found in our previous paper [33].

The second case study develops a maze-solving robot simulator [32] wherein
a context can be per-instance, per-control-flow, and global and the events trig-
gering the context changes are explicit. The second case study also shows the sit-
uation where a context-dependent use case is not a specialization of another use
case. Principle 3 assumes that there is a default use case for context-dependent
use cases; however this assumption does not hold in this case study. The following
principle compensates for such a situation.

Principle 4 If a top-level use case is also context-dependent, it should be im-
plemented using a layer.

Generally, multiple objects can participate in a use case and, as Jacobson
suggests [28], behavior in such a use case crosscuts multiple objects and thus
should be implemented using a layer.



6.1 Maze-solving Robot Simulator

This application simulates how a line-tracing robot solves a maze13. The robot
solves a maze comprising black lines on a sheet of white paper. After solving
the maze, the robot runs the optimized path from the starting point to the goal.
The maze-solving phase comprises the following behavior.

– Performing line tracing until the robot reaches an intersection, a corner, or
a dead-end (we refer to these as intersections for simplicity).

– Detecting intersections using reflectance sensors attached to the robot.
– Making a turn at each intersection according to the implemented algorithm,

e.g., left-hand rule, right-hand rule, and Trémaux’s algorithm14. In this ex-
ample, we set the left-hand rule as default behavior.

– Remembering the sequence of behavior at each intersection (and possibly all
visited intersections) and calculating the optimized path from the starting
point to the current intersection by eliminating dead-ends.

The robot can also display some debugging information, such as currently visited
paths, on the small display attached to the robot.

The simulator emulates the behavior of the maze-solving robot. In this simu-
lator, the maze is modeled as a graph where each node represents an intersection
that provides coordinates to represent its position. An instance of the robot em-
ulates maze-solving on this model, e.g., line-tracing is simplified by updating
the current position of the robot according to the destination of the selected
edge, which models the segment. Here, a segment is a part of a path from one
intersection to another.

For the user, this simulator provides a number of functionalities: editing a
maze, simulating how the robot solves the maze, and simulating how the robot
follows the optimized path after solving the maze. These functionalities are exclu-
sive, i.e., when we are editing a maze, we cannot run any simulations for solving
the maze and running the optimized path, and so on. These functionalities are
switched when the user finishes editing the maze (or loads the pre-edited maze)
and when the robot finishes solving the maze. The simulator provides GUI tools,
such as a menu bar and menu buttons that are automatically switched when the
functionalities are switched. During maze-solving, the visited intersections and
segments are colored to visualize the traced path (Fig. 6 (a)). Furthermore,
while the robot is solving the maze, the user can select the debug mode. In
debug mode, the color of intersections and segments in the currently calculated
optimized path are changed and text based notation of the optimized path is
displayed (Fig. 6 (b)).

From this description of the behavior, we first derive the variables that de-
termine the current context (Table 6). Unlike the previous examples, in this

13 This simulator is inspired by a real maze-solving robot (Pololu 3pi Robot: http:
//www.pololu.com/product/975) and the behavior of the simulator is modeled by
following the sample program provided by the 3pi Robot distribution.

14 Only Trémaux’s algorithm can solve the maze with loops.



(a) Simulator solving a maze. The red
lines represent the traced path.

(b) Simulator in the debug mode.
The green lines overwrite the red lines
and represent the optimized path. The
textbox displays the text-based nota-
tion of the optimized path.

Fig. 6. The maze-solving simulator. The lines indicate paths within the maze. The
start is the lowermost dead end. The black circle represents the goal.

Table 6. Maze-solving simulator variables

subject name description

global editingMaze The user is editing a maze
solvingMaze The user is simulating maze-solving
runningMaze The user is simulating running the solved maze
debugging Showing the debugging information

robot rightHand Solving maze using the right-hand rule
tremaux Solving maze using the Trémaux algorithm

cflow displaying Displaying the path information

case we identify three types of subjects. From the perspective of the user, this
simulator provides different functionalities with respect to the current user task.
These functionalities are identified as global because the user is not aware of a
particular part of the system. Several maze-solving algorithms are selected dy-
namically. These algorithms are executed by an instance of the robot modeled
in the simulator. Thus, we identify the subject for these algorithms as a robot.
Finally, we identify the context that holds when path information is displayed.
Path information comprises a particular control flow; therefore, we identify its
subject as a control flow (cflow).

Table 7 lists context-dependent use cases for the maze-solving simulator.
First, we identify four top-level use cases, i.e., “Editing a maze,” “Solving a
maze,” “Running a maze,” and “Debugging.” For “Solving a maze,” we further
derive context-aware alternatives based on the selected algorithm. “Debugging”
also includes displaying the debugging information, which is executable only
within the control flow of the displaying behavior.



Table 7. Use cases for maze-solving simulator

name activation condition

Editing a maze editingMaze
Solving a maze solvingMaze

Solving with right-hand rule rightHand
Solving with Trémaux tremaux

Running a maze runningMaze
Debugging debugging
Displaying debug info. debugging && displaying

Table 8. Classes for each layer of maze-solving simulator

layer classes

EditingMaze View

SolvingMaze Robot, View
RunningMaze Robot, View
Debugging Robot, View
UnderDebugging Segment, Intersection

As suggested by Principle 4, we first identify the top-level use cases as layers,
i.e., EditingMaze, SolvingMaze, RunningMaze, and Debugging. “Displaying de-
bug info.” is a use case included by “Debugging,” but it is not a specialization
of other use cases; therefore, we identify it as a layer, i.e., UnderDebugging. By
following COSE, the remaining two use cases are not identified as layers here.
However, in a later step we actually come to consider that they are layers.

Next, we identify the names of classes from the use case scenarios. Table 8
lists the important classes for implementing context-dependent behavior. The
class Robot models the behavior of the virtual robot, and the class View pro-
vides the view for the user. Many of the layers crosscut both classes. The layer
UnderDebugging changes the color of segments and intersections accessed from
the path-printing methods.

While identifying classes, we noticed that two context-dependent use cases,
“Solving with right-hand rule” and “Solving with Trémaux,” which were not
identified as layers, also crosscut multiple classes. The selected algorithm changes
not only the behavior of the virtual robot instance but also the enabling config-
uration for the menu items in GUI components. Thus, we can identify two other
layers, i.e., RightHandRule and Tremaux, that cut across two classes, i.e., Robot
and View. This observation reveals that a context-dependent use case that does
not share contexts with other use cases can crosscut multiple classes, and could
be a layer. To determine whether such a use case should be identified as a layer,
we must assess the use case scenario carefully to determine whether the context-
dependent use case includes multiple objects, or to postpone the decision until
we design the classes.

After designing the classes, we define the detailed specifications of the con-
texts. In the previous examples, we provide the specification of each context as



Fig. 7. Context transitions and events in the maze-solving simulator

1 global contextgroup MazeUI() {

2 activate EditingMaze from startEditor to startSolver;

3 activate SolvingMaze from startSolver to solved;

4 activate RunningMaze from solved to never;

5 activate Debugging from startDebug to endDebug;

6 context Displaying is in cflow(call(void Simulator.printPath()));

7 activate UnderDebugging when Debugging && when Printing;

8 }

Fig. 8. Context group for UI in the maze-solving simulator

a boolean type method call implemented using an if expression in ServalCJ. In
this case study, we follow a different approach. There are apparent state changes
in the simulator user interface. First, the interface provides the maze editor to
the user. Then, it provides the menus and tools to solve the maze. During maze
solving, the user can switch to the debugging mode. After solving the maze, the
user interface provides menus and tools to run the optimized path. Each state
corresponds to each global context in Table 6, and, by observing use case sce-
narios, we explicitly identify events by following the method described in [31].
The contexts and events are summarized in Fig. 7.

Using events, we specify each global context (Table 6) as follows.

EditingMaze:: after startEditor until startSolver.
SolvingMaze:: after startSolver until solved.
RunningMaze:: after solved.
Debugging:: after startDebug until endDebug.

Each condition is read as a term in temporal logic that holds after the specified
event (e.g., startEditor) after another specified event (e.g., startSolver). Ser-
valCJ provides active until expressions that correspond to such temporal logic
terms (Fig. 8).

How to determine whether we should use explicit or implicit events will be
addressed in future work. One possible criterion is performance. Implicit events
impose additional overhead on the application (because each conditional in if
is evaluated before each call of a partial method); therefore, if events are explicit
in the specification, we should consider using explicit events. Another criterion



is modularity. Explicit events easily raise the scattering problem or the fragile
pointcut problem [37], and implicit events are the solutions to these problems.
For the global contexts of the maze-solving simulator, we apply explicit events
because events are apparent in the specification, and the specification is unlikely
to change.

The context “displaying” in Table 6 is identified as cflow, which means that
the subject of this context is a particular control flow. For this purpose, ServalCJ
provides the cflow construct that declares that the specified context holds under
the specified control flow. In Fig. 8, this context is declared to be active under
the printPath call control flow on an instance of Simulator (line 6).

The contexts “rightHand” and “tremaux” are specified as a boolean type
method call, similar to the cases in the conference guide system and CJEdit.

activate RightHandRule if(sim.isRightHandRule());
activate Tremaux if(sim.isTremaux());

7 Discussion on Modularity

The case studies demonstrate our COSE methodology and effectively answer
the research questions described in Section 3. In this section, we summarize and
validate our results.

7.1 Summary of Results: RQ1

In Section 2.2, we identified several difficulties encountered when developing
context-aware applications. Thus, we formed RQ1, “How should contexts and
behavior depending on the contexts be elicited from the requirements?.” To
answer RQ1, we suggested Principles 1 and 2 and analyzed their validity through
case studies. The results of the case studies are summarized as follows.

Identification of Contexts and Requirements Variability. As illustrated in Sec-
tion 4.1, COSE systematically identifies contexts by observing the behavior of
the system-to-be, such as use cases and prototypes. Furthermore, we clarify a
criterion that should hold for each context, i.e., a context should not be a subcase
of other contexts. Requirements variability based on contexts is also represented
by context-dependent use cases.

Different Levels of Abstraction. As discussed in Sections 4.1 and 4.4, COSE
provides a concretization process for contexts. A context may be composed of
other contexts that are less abstract than the composed context. Each level of
abstraction of contexts in the specification is also directly represented by the
implementation language using composite layers.

Multiple Dependencies Between Contexts and Behavior. As discussed above,
given composite layers, layer activation can be triggered by complex activation
conditions.



Requirements Volatility in Context Specification. Each context-dependent use
case is represented in terms of abstract contexts; therefore, it is robust against
changes in detailed specifications of concrete contexts. For example, in the confer-
ence guide system, the specification of the outdoor context may change according
to the evolution of sensor technologies. Context-dependent use cases that depend
on the outdoor context will not be affected by such changes because the detailed
specification of the outdoor context is abstracted from the context-dependent
use cases. We may also separately perform such changes because the definitions
of contexts are encapsulated in context groups in ServalCJ.

Crosscutting of Contexts in Multiple Use Cases. COSE groups a number of
behavior variations that are executable under the same contexts and scattered
across multiple use cases into a single layer. As discussed in Section 4.2, COSE
also provides a guideline to determine when to use COP.

Crosscutting of Behavior Changes. Dynamic changes of contexts and dependent
behavior scattered across the whole execution of the program are separated
as specifications of contexts and implemented directly using context groups.
Specifically, definitions of such changes are specified declaratively and completely
separated from the base program.

Interferences Between Behaviors. The case studies show that there are depen-
dencies between layers (e.g., outdoors and indoors are exclusive variations of
behavior), and COSE clarifies such dependencies due to the orthogonality and
exclusiveness of the variables used in the context conditions. These conditions
are straightforwardly implemented using composite layers in ServalCJ, and the
dependencies are ensured by the implementation language.

Modular Translation to the Implementation. The layers and classes identified in
Sections 4.2 and 4.3 are implemented directly in layers and classes in ServalCJ.
Context specifications (Section 4.4) are directly implemented in context groups
in ServalCJ. Each requirement in the specification is not scattered across multiple
modules in the implementation, and each module is not entangled with multiple
requirements.

In summary, the case studies reveal that the factors that change system behavior
are “candidates” for contexts, and each context can be represented as a Boolean
variable. A criterion to identify contexts can be derived from this representation
of contexts, i.e., each context at the abstract level should not depend on other
contexts. A context and other contexts should be orthogonal or, if they are not
orthogonal, they should be exclusive. This criterion enhances the exhaustiveness
of contexts and makes it easy to discuss the equivalence between contexts.

7.2 Summary of Results: RQ2

The answer to RQ2, “When should we apply COP rather than other development
methods?,” is represented by Principles 3 and 4, and to validate that, we must



further discuss the validity of the decision made in the case studies because there
are other alternatives to implement such variations.

We can validate it using Tables 4 and 5. First, the layers HasSchedule and
HasNetwork crosscut multiple classes; thus, the same concern may scatter over
those classes if we naively implement them using if statements. Applying design
patterns may also produce this scattering problem. Extracting such scattered
code as a common superclass requires an additional class hierarchy, which may
be orthogonal to the existing hierarchies. Applying multiple inheritance, mixins
[11], and traits [48] makes it difficult to look at all classes that are composed
of the same context-dependent behavior. In contrast, layers in COP provide a
good solution to encapsulate such concerns. More importantly, techniques other
than COP make it difficult to separate behavior changes from the base program,
which is possible in (some variants of) COP languages.

In contrast, the Outdoors, Indoors and StaticMap layers in Table 5 exist
in only the Map class; thus, they do not appear to contribute to the separa-
tion of crosscutting concerns. However, from Table 4, we observe that Outdoors
consists of two use cases implemented by different methods. Therefore, using if
statements would result in scattering of the same conditions over those methods.
We can avoid this scattering by, for example, allowing the Map object to have
a state of the current situation and by defining behavioral variations for each
state using the state design pattern. The problem with applying design patterns
is the scattering and tangling of behavioral changes. The state changes of the
Map object are triggered by external environment changes, which are observed
by the framework. We must embed state changes of the Map object by imple-
menting appropriate event handlers of possibly multiple modules (e.g., the Wifi
and GPS related classes). Thus, it is difficult to localize the overall state changes
in the Map object. By applying COSE with appropriate COP languages, we can
separate such context changes into a single module.

Similar discussion holds in the case study of CJEdit. However, in the maze-
solving robot simulator example, the case wherein the context-dependent use
cases whose contexts are not shared with other use cases are also identified
as layers. This indicates that, while the principles hold, there are cases where
we should postpone the decision to implement variations of context-dependent
behavior using layers until we are designing classes.

7.3 Summary of Results: RQ3

The implementation in ServalCJ discussed in Section 5 implies that the imple-
mentation is directly obtained from the requirements in our approach. There are
injective mappings from layers and contexts discovered in the requirements to
those in the implementation language. Thus, this mapping promotes separation
of concerns in that requirements are not scattered across several modules in the
implementation, and each module is not entangled with a number of require-
ments.

The implementations in the case studies rely on the specific linguistic con-
structs provided by ServalCJ. To answer RQ3 “How do COP mechanisms sup-



Table 9. Comparison with other activation mechanisms

ContextJ AOP+COP EventCJ ServalCJ

Separation of context-dependent a a a a
behavior15

Separation of context changes n/a a a a
Expressing relations between n/a n/a a a

layers and contexts
Implicit activation n/a n/a n/a a

port predictable control of changes in context-dependent behavior?,” we identify
the properties that the implementation languages should have to make COSE
effective, and we compare ServalCJ with other languages and implementation
techniques, such as ContextJ [7], EventCJ [29, 30], and a pseudo AOP language
with a dynamic layer activation mechanism (similar to the one discussed in
Section 2 of [29]), with respect to those properties. Table 9 summarizes the
comparison. The leftmost column shows the numbers and titles of the following
sections.

We do not argue that programming languages that do not support the fea-
tures listed below are not useful in COSE. In such languages, we can still apply
useful workarounds to implement specifications organized by COSE, which would
not be a poor choice in some circumstances, such as the availability of libraries
and a development environment, and programmer preference. Nevertheless, Ta-
ble 9 indicates that recent progress in COP languages effectively supports COSE,
which will be good input for future language design.

Separation of Context-dependent Behavior. First, in COSE, the imple-
menting language should separate context-dependent behavior that is dynam-
ically enabled and disabled from the base program. The layers of COP lan-
guages provide an effective way to achieve this. Each partial method implements
the context-specific behavior of the base method, and a layer packs all par-
tial methods executable under the same context into a single module. Besides
COP, other programming paradigms, such as AOP and feature-oriented pro-
gramming (FOP) [42], also provide such modularization mechanisms; however,
for these paradigms, we require an additional mechanism for dynamic composi-
tion of modules. For example, dynamic aspect deployment [10] may be applied
for this purpose.

Separation of Context Changes. We can also see that, in COSE, speci-
fications and implementations of dynamic changes of contexts and dependent

15 ServalCJ (and EventCJ) only supports the layer-in-class style. Thus, the same layer
may be scattered across multiple classes. In fact, such layers exist in both case
studies. This scattering can be addressed by supporting the class-in-layer style in
the syntax.



behavior are also separated from other specifications and modules, respectively.
From an implementation perspective, such dynamic changes can be easily scat-
tered over the whole application execution. Such scattering behavior can be
avoided using the pointcut-advice mechanism in AspectJ [36] (provided that it
is also equipped with some imperial layer activation mechanism) or other COP
languages with AOP features, such as EventCJ and JCop [9].

In some COP languages, layer activation is controlled in a per-thread manner
whereby the generation of the event activating the layer and layer activation
occur synchronously. In such languages, it is difficult to separate dynamic be-
havior changes. For example, in ContextJ, layer activation is expressed using
with-blocks, which ensures that layers are active only within the explicitly spec-
ified dynamic scope.

with (activeLayers) { onResume(); }

However, context changes are triggered by external events that asynchronously
occur with the dynamic behavior change. For example, in this case, we must
remember the active layer within the body of the event handler that handles the
change of contexts to activate context-dependent behavior that does not appear
in the scope of the event handler:

void someEventHandler(Event e) {
activeLayers.add(Outdoors);

}

In this case, the scattering problem is readily encountered, and the base program
is entangled with the concerns about dynamic changes of behavior.

Expressing Relations Between Layers and Contexts. From COSE, we
also see that a behavior variation may depend on multiple contexts. For ex-
ample, from Table 4, we see that the use case “Using a static map,” which is
implemented in the layer StaticMap, depends on both the outdoors and indoors
contexts, one of which, i.e., outdoors, is further decomposed into two contexts,
i.e., WifiAvailable and GPSAvailable. To separate context-dependent behav-
ior from the detailed specification of contexts, such an abstraction mechanism
is necessary. From an implementation perspective, composite layers [30], which
are supported by EventCJ and ServalCJ, are useful for this purpose.

Implicit Activation. In most existing COP languages, we must specify the
join point where the context change occurs explicitly. In COP languages with
AOP features, we perform such specification using the pointcut sublanguage. In
COP languages with with-blocks, we explicitly inject the layer activation block
into the base program. However, from the case studies, we have learned that a
more declarative way to specify the condition that activates the corresponding
context is used heavily in the context specification, which is directly implemented
using the implicit layer activation mechanism provided by ServalCJ (i.e., the if
condition that specifies the condition when the corresponding context is active).



This indicates that, even though it currently suffers performance problems, the
implicit layer activation mechanism can be a strong tool to implement dynamic
behavior changes modularly from the specification.

It is also possible to translate implicit layer activation manually into an
explicit activation by identifying the join points where the condition is changed.
However, with multiple join points, we must list all of them, which is an error-
prone task. Furthermore, explicitly specifying join points using a pointcut often
raises the fragile pointcut problem [37].

7.4 Open Issues

Our preliminary case studies on COSE raise the following open issues that should
be explored.

First, all case studies in this paper are simple. Although these case studies
demonstrate the effectiveness of COSE, they do not guarantee success in more
complex cases. In large systems, we may have a large number of dynamic be-
havior changes, some of which would be context dependent. Eliciting contexts
from such systems may be time consuming. Furthermore, in all case studies,
the target system is standalone and implemented using a single programming
language. We should not assume that the results of the case studies imply that
we can easily apply COSE to distributed systems implemented using multiple
programming languages.

Second, COSE represents variations of context-dependent behavior using use
cases. There may be some cases in which we prefer to use methods other than
use cases, such as feature diagrams and goal models. The results in this paper
do not guarantee that we can apply similar context-oriented extensions to such
methods.

Third, the case studies do not convey compelling results regarding the costs
and benefits of COSE. The results ensure modularity of the products. However,
they do not reveal how such modularity affects the real software production
process and the quality of its products. We believe that COSE would have a
significant impact on software development, in particular on software mainte-
nance, because it provides comprehensive abstractions, clarifies complex rela-
tions between contexts and behavior, and provides good modularity. However,
this should be validated through a number of control experiments. Furthermore,
the principles explained in Section 3.2 should be validated through a number of
demonstration experiments and industrial software development.

Finally, as mentioned above, there are open performance issues with implicit
activation, which is heavily used in the case studies. The performance problem is
not significant in the case studies; however, this assumption will not always hold
in larger applications. In some cases, we may optimize implicit activation, but
such optimization may not be feasible in other cases. The case studies do not
provide a concrete criterion for when implicit activation is preferable (because,
e.g., it enhances modularity) or when other mechanisms, such as event-based
activation, should be used (e.g. due to the performance considerations).



8 Future Research Roadmap

In this paper, we have presented COSE and proposed that it can be employed for
the effective development of context-aware applications. Specifications system-
atized by COSE effectively represent different levels of abstraction of contexts,
which makes the system robust with respect to changes in the detailed defini-
tions of contexts. Context-dependent use cases are used to discover a layer, i.e.,
a modularization unit in COP, from the specifications. The injective mapping
from specifications to implementations ensures that each specification in the
requirements is not scattered across multiple modules in the implementation,
and each module is not entangled with multiple requirements. The comparison
among several implementation techniques shown in Section 7.3 reveals the key
linguistic constructs that make COSE effective and indicates important research
directions for context-oriented software development.

This paper has presented preliminary studies on COSE. Although these stud-
ies reveal that our approach is promising, there are a number of open issues. In
this section, we discuss our future research roadmap.

8.1 Systematizing Context Identification

The applications mentioned in the case studies are simple, and the number of
identified contexts is not large. In large systems, the number of “candidates for
contexts” will be very large. Furthermore, the system-to-be will be described us-
ing natural languages including diagrams in inconsistent syntax. In some cases,
such descriptions will be scattered over various resources, such as text docu-
ments, spreadsheets, and emails. This unstructured piling up of descriptions can
easily results in a situation whereby conceptually equal contexts are described
in different words and notations.

In Section 4, we listed the factors that change the system behavior as candi-
dates for contexts. This is the most fundamental property of contexts. To identify
contexts systematically and deal with a large number of candidates for contexts,
more precise criteria to find candidates for contexts are required. For example,
for a factor that changes the system behavior to be identified as a context in
COP, it should affect the behavior of a number of objects in the system. More-
over, all contexts in the case studies are external with respect to the affected
entities.

From this perspective, we plan to develop a systematic context elicitation
process that is applicable in the early stages of requirements elicitation. Some
work in requirements engineering, such as context-dependent domain analysis
[19], will be a good starting point.

8.2 Requirements Based on Other Methods

Using use cases is a very effective way to identify the functional requirements of
the system-to-be. Use cases do not require special languages to describe them;



thus, people from various backgrounds can understand them easily. Neverthe-
less, they effectively describe system behavior. Furthermore, they prevent hasty
design; design methods based on use cases have been well studied.

However, using use cases is not a panacea. For example, they are not suitable
for representing non-functional requirements, which are better specified declar-
atively elsewhere, or for describing the requirements specifications of platforms,
such as operating systems and frameworks. There are also a number of methods
for analyzing requirements that are not based on use cases. It is natural to ask
whether it is possible to apply methods similar to that described in this paper
to other requirements analysis methods.

Goal-oriented methods for requirements engineering [18], [40] are complemen-
tary approaches suitable for eliciting requirements variability and constraints.
Non-functional requirements are derived from their soft goals. Their variability
and constraints may depend on executing contexts. Although a goal-based ap-
proach for contextualization has been proposed previously [3], further research
should be conducted to explore, for example, approaches to align goal-based
approaches and use-case-driven approaches.

Feature modeling presents a compact representation of all products of a
software product line. Feature models are represented by means of feature di-
agrams [34]. Features provide requirements for architectures (including non-
functional requirements) and reusable functions. At the programming language
level, layers in COP resemble features in FOP [5], [50]. This similarity indicates
that we may develop a context-oriented extension of FOSD [4]. For example,
some existing work in this field [14] would be a good starting point.

Application of the context-oriented software development described in this
paper to these major requirements engineering methods is a future challenge.

8.3 Evaluation

To ensure that our methodology is effective, it is necessary to perform fur-
ther evaluation. For example, we must evaluate the costs and benefits of our
methodology, and the validity of the decision to use layers to implement context-
dependent behavior rather than other mechanisms through controlled experi-
ments that compare our methodology with other software development methods.
It is difficult to conduct controlled experiments, and derivation of quantitative
evaluations would be a length process. Meanwhile, we think that it is impor-
tant to conduct a number of demonstration experiments to collect experience
by applying our approach. In particular, we believe that the application of our
methodology to industrial software development is particularly important.

Since one purpose of our study has been to enhance modularity, an evaluation
will be performed from this perspective. For example, an experimental study of
how our approach makes it easy to deal with volatile requirements regarding
contexts and analysis of the effects of requirement changes should be performed.



8.4 Implicit Activation

In two of the three case studies, all contexts are implemented by means of layer
activation triggered by conditionals (i.e., if expressions in ServalCJ). As men-
tioned above, this implies the importance of implicit layer activation. However,
there is a performance problem with implicit layer activation. A naive implemen-
tation strategy is to evaluate the condition that specifies when the corresponding
context is active at every call of the layered methods, and when that condition
holds and the corresponding context is not active, then that context is activated.
This strategy will not produce a serious problem if the number of layered method
calls is not so high. However, in the case where calls of layered methods frequently
and repeatedly occur (e.g., where calls of layered methods are included within a
loop statement), this strategy may result in serious performance problems.

Thus, developing an optimization mechanism for implicit layer activation so
that the evaluation of the context condition occurs only when necessary is an
important research topic. There are several approaches for this purpose.

One approach is to develop an ad hoc method that optimizes parts of the
program where calls of layered methods may occur frequently, such as loop state-
ments. For example, if we can determine that the context condition will never
change during the execution of the loop, we can rewrite the loop so that the
context condition is evaluated just once at the entrance of that loop.

For a more effective approach, we may explore a method to statically analyze
when the value of the context condition changes. For example, assuming that c
is a condition for the context C, if we can derive a pair of predicates (p, q) for
which it can easily be checked that (p ∧ p =⇒ c) ∧ (q ∧ q =⇒ ¬c), then we
can insert evaluations of c where the values for p or q change. We are currently
considering an application of predicate abstraction for model checking for this
purpose.

Although it is desirable to limit changes of a given context condition in a
small amount of code, it is generally possible that the change of context condition
can occur anywhere in the program execution, which requires a whole program
analysis. To make the whole program analysis lightweight and feasible in the
case when the whole code is not available for analysis, it is also necessary to
study the application of whole program analysis without the whole program [2]
for COP programs.

The emphasis on implicit activation does not mean that event-based activa-
tion of contexts is not necessary. First, event-based activation should be used
where layered methods are frequently called and optimization of implicit layer
activation is difficult for some reason. There are also cases where the specifica-
tion of a context is defined in terms of events (even though this did not occur
in our case studies). For example, there may be a specification of stateless ob-
jects whose contexts are changed by clicking buttons. In this case, it is better
to implement context activation in an event-based manner than to introduce a
state for each object to manage context activation using the implicit activation
mechanism. There are also cases where context changes can be observed from
both conditions and events.



The problem is that there are no clear guidelines for when to use implicit
layer activation and when to use the event-based mechanism. To create such
guidelines, we must study this problem from both programming language and
programming practice perspectives. From the programming language perspec-
tive, as mentioned above, it is necessary to determine the feasibility of efficient
implementation of implicit activation. Meanwhile, formalization of implicit acti-
vation is also desirable to precisely study the semantics of implicit activation. We
think that implicit activation (of layers) is a special case of functional reactive
programming (FRP) [20] in that the change of the condition (value) reactively
changes the result of the activation (computation). FRP is considered a special
case of implicit activation (of behavior) by viewing it as a way to propagate
values in a constraint graph of variables and expressions. It is possible that both
have some shared foundations in continuous constraint solving. Understanding
implicit activation in terms of FRP may further clarify the semantics of implicit
activation.

From the programming practice perspective, through a number of other case
studies, we plan to discover common patterns in context activation, which will
serve as guidelines.

8.5 Distributed, Multi-language Environment

Both case studies in this paper are standalone applications written in a single
programming language. However, in real products, systems are implemented
using multiple programming languages and sometimes comprise a number of
components and services over networks. There are two problems with applying
our methodology to such systems.

First, to the best of our knowledge, ServalCJ is the only language that has all
the desirable properties shown in Section 7.3. We must explore how to realize the
mechanism supported by ServalCJ in a wide range of programming languages
including those suitable for high performance computing such as C and C++,
and scripting languages such as JavaScript.

Second, little COP research has been devoted to sharing the same context
among multiple application processes. Sharing a context among processes over a
network is possible in programming languages that support network-transparent
communications between processes such as ContextErlang [47]. Further research
is required to support network-transparent contexts in other programming mod-
els and develop a mechanism to share contexts among multiple programming
languages, which may communicate with each other over the network.

Based on these technical elements, we will study the applicability of COSE
to more realistic and sophisticated software development situations.
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