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Chapter 1

Introduction

1.1 Background

1.1.1 Recent Tendency of Language Design

In the past years, simple object-oriented languages were considered more prefer-

able to programmers than more powerful but complex languages, because com-

plex languages sometimes become error prone. For example, the complexity

of multiple inheritance was criticized because it produces more problems than

what it solves (e.g. violation of encapsulation in CLOS by linearization of mul-

tiple superclasses) [55]. In many object-oriented languages such as Smalltalk,

Java, and C#, code reuse is supported by simpler mechanism of single inheri-

tance and overriding; using them, programmers may derive a new class by spec-

ifying only the elements to be extended and modified from the original class.

Actually, the type system of Java, one of the most widely-used strongly typed

object-oriented languages, can be characterized by simple constructs such as

classes, single inheritance and subtyping, method and field declarations, and

so on [34].

Today, however, this tendency seems to be over. Simple languages have

turned out to be less expressive than what programmers really want. There

are many evidences that more powerful and safe languages are considered more

desirable. For example, the recent version of Java offers full expressive power of

parametric polymorphism [11] and wildcards [64, 36]. Furthermore, current en-

thusiasm on aspect-oriented programming [39] implies that many programmers

7



8 Chapter 1 Introduction

think the current object-oriented languages are less expressive for modularizing

program pieces. Extensive efforts are now being taken to extend Java to more

expressive languages [20, 33, 38, 3, 61, 17, 14, 31, 28].

This dissertation stems from the above observations. In particular, the

widely-used single inheritance mechanism lacks an ability of reusing uniform

extensions and modifications to multiple classes.

1.1.2 Problems in Single Inheritance of Java

Java-like languages have a problem in reusability. To see this problem, suppose

we are developing a widget library for GUI components. For example, we will

declare a class Label. Then, we will extend it to get a subclass with the “color”

feature such as an attribute that represents the color of the label, a method to

change the color, and so on. We will also declare a class Text, and extend it to

get a subclass of Text with the “color” feature in the same way. In this case,

the code for the “color” feature is duplicated in multiple classes thus degrading

maintainability of the program.

One way to avoid such duplication is to use design patterns [30] such as

the decorator pattern. However, design patterns impose an additional work-

load on programmers; e.g., we have to invent some additional classes that are

not essential in the problem domain. Furthermore, discovering which pattern

is used in the program is rather difficult, because patterns are implicit; i.e.,

there are no language constructs for describing patterns, making it difficult to

understand the program.

The problem is that there are no straightforward way for modularizing the

“color” feature. In fact, Java does not provide a construct to modularize such

uniform extensions and modifications to multiple classes.

Another problem of Java is found in subtyping. In Java, we can explic-

itly denote a class is a subtype of another class or interface by using the

extends or implements clause1. Furthermore, this subtype relation is transi-

tive; e.g., a class is a subtype of its immediate superclass’s superclass. How-

ever, there are no subtype relations between classes that extend the same

class through different inheritance paths, even when they implement the same

1We can also denote a interface is other interfaces
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Text
void insert(char ch, int pos)
Point displayPos(int pos)

Compound
void insertPart(Text doc,
                             Point pos)

CompoundTextColorText

CompoundColorText

Figure 1.1: Subtyping anomaly in Java

interface. Figure 1.1 illustrates this problem. The class CompoundText ex-

tends Text and implements the interface Compound. ColorText extends Text.

The class CompoundColorText extends ColorText and implements the in-

terface Compound. In this case, we should be able to use an instance of

CompoundColorText in the context of CompoundText, because the former class

implements all the features provided by the latter class. However, Java does not

allow this usage, because there are no subtype relations between CompoundColor-

Text and CompoundText. Therefore, even though execution of the following

code will be safely performed, the Java compiler reports an error.

class LibraryServices {

void insertDocPart(Text doc, CompoundText ct, int pos) {

ct.insertPart(doc, ct.displayPos(pos));

...

}

}

CompoundColorText cct = new CompoundColorText();

LibraryServices ls = new LibraryServices();

...

ls.insertDocPart(doc, ct, pos) // Compile error!!

This inflexibility in subtyping should be avoided in some ways.
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1.1.3 Mixins in Flavors and CLOS

A programming construct mixin (also known as abstract subclass) was invented

in object-oriented extensions of Common Lisp such as Flavors [43] and popu-

larized by CLOS [37]. By using mixins, we can implement uniform extensions

and modifications to classes.

A mixin is a partially implemented subclass whose superclass is not pro-

vided in its declaration; we may provide a variety of actual classes to the mixin

to create a concrete class. For example, in CLOS we may declare a mixin

Color with the declaration:

(defclass Color () (color))

(defmethod paint ((self Color) (g Graphics))

(setColor g (slot-value self ’color))

(call-next-method g))

The defclass construct includes the name of the new class, a list of its

superclasses, and a list of its instance variables (a list of slots in CLOS termi-

nology). The argument list of the defmethod construct declares the class on

which the method is defined. The expression call-next-method plays the role

of super in Java.

In the above definition, Color does not declare any superclasses, but it

invokes call-next-method. This invocation obviously leads to an error unless

a superclass of Color is provided. The CLOS linearization mechanism plays

an important role for providing it; i.e., we can declare a subclass of both Color

and its “superclass”, e.g., Label:

(defclass ColorLabel (Color Label) ())

In CLOS, if a class inherits from multiple classes, and these classes declare

methods with the same signature, these methods are combined by call-next-

method. Which method is executed by the call of call-next-method is de-

termined by the order of the list of superclasses declared in defclass. In the

above case, the execution of paint defined in Color always precedes paint

defined in Label. Therefore, we can combine the paint methods declared on

Color and Label.
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The class Color is a mixin that provides uniform extension and modification

to multiple widget classes. We may compose it with classes other than Label:

(defclass ColorText (Color Text) ())

Note that the mixin in CLOS is simply a coding convention and has no

formal status. In CLOS, every class can be a mixin if it uses call-next-method

that is not bound to any superclasses, whereas in our approach explained below,

mixins are explicitly declared with a new syntactical form.

Mixins provide much reusability because a mixin makes it possible to add

common features (that will be duplicated in a single inheritance hierarchy)

to a variety of classes. Mixin-based programming has been studied both on

the methodological and theoretical point of views [9, 10, 5, 8, 27]. Small core

languages that support mixins or mixin modules are also proposed [29, 23].

Despite the existence of these extensive studies, relatively few attempts are

made on designing real strongly typed programming languages that support

mixins2.

1.2 Subject of the Dissertation

This dissertation addresses how to design and implement the mixin mechanism

in nominally typed object-oriented languages like Java to solve the aforemen-

tioned problems. There are many technical problems in the language design

and implementation treated in this dissertation:

Language Design and Type Soundness. Type soundness is one of the

most basic properties of programming languages that ensures well-typed pro-

grams do not “go wrong.” Most modern programming languages such as Java

are designed to hold this property. To design an extension of such a language,

we should carefully study how the new constructs interact with the existing

constructs to ensure that the new constructs do not behave unsafely. In other

words, we should prove that the property of type soundness still holds in the

language extending Java with mixins.

2There are some work related to our approach such as Jam [4] that integrates mixins with
Java. We will note differences between these work and our approach in Chapter 7.
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Implementation. New language constructs should not degrade run-time

performance of the original language. Furthermore, if we consider compati-

bility with the existing run-time systems, the new constructs should also run

efficiently on the current standard platforms. This implies that we should

carefully study compilation strategy of mixins.

Assurance of Behavioral Consistency. Sometimes, a new programming

language construct, which solves some problems, also produces new problems,

even when it holds that the type system is sound. One problem that mixins

raise is known as accidental overriding. This problem stems from the fact that

an implementor of a mixin does not know what superclass the mixin will be

composed with. Therefore, when a user of a mixin (who will be different from

the implementor of that mixin) tries to compose it with some other classes, it

is possible that a method declared in the mixin accidentally overrides a method

declared in the superclass. This overriding is harmful because it accidentally

changes the behavior of the superclass, so it should be avoided in some ways.

Interaction with Other Constructs. As mentioned before, there are ex-

tensive efforts in extending Java with other useful constructs that are originally

not related to mixins. For example, there are many efforts on adding paramet-

ric polymorphism to Java [47, 11, 1, 19] (one of which, [11], is actually included

in the official release of Java). Another example is introducing the type of self

(MyType) [13] to Java [14] (in this context, it is called ThisClass or ThisType).

It is interesting to study how these advanced issues interact with mixins.

1.3 Our Contributions

The contributions of this dissertation are summarized as follows:

• We design a programming language McJava3, an extension of Java with

mixins. McJava provides a new syntactic form for explicitly declaring

mixins. A mixin can be composed with a variety of superclasses by using

a composition operator. Furthermore, McJava supports more advanced

3Mixin-based Compositions for Java
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features such as higher order mixins [6] that is a mechanism for allowing

a mixin to be composed with another mixin, resulting a new mixin, and

mixin-based subtyping, a flexible subtyping relation defined among mixin

compositions.

• We develop Core McJava, a small subset of McJava that offers a few key

constructs that characterize the type system of McJava. We then develop

a proof of type soundness of Core McJava. As a vehicle for our study of

Core McJava, we extend Featherweight Java [34], a small core language

of Java.

• We implement a McJava compiler that compiles McJava programs into

Java programs. This makes an assurance that McJava programs are

runnable on any standard Java virtual machines. It also ensures that

McJava do not degrade run-time performance of Java.

• To tackle the problem of accidental overriding, we equip a new method

dispatch mechanism on McJava. This mechanism allows multiple meth-

ods with the same signature coexist on the same object; when a method

is called on the object, the most specific method (that corresponds to the

Java method dispatching rule on overriding) from the viewpoint of the

statically known type of the object is selected to execute. McJava raises

another non-trivial issue on this dispatching. Owing to its flexible mixin-

based subtyping rules in McJava, an immediate superclass of a mixin

in the run-time inheritance chain may be different from the statically

known superclass, thus requiring a sophisticated treatment in invoking a

superclass’s method. We implement this method dispatching mechanism

onto the McJava compiler.

• We study how mixins interact with generics and ThisType [14]. We de-

sign an extension of McJava with generics and ThisType, and informally

discuss that the language is not type-sound, but we can recover type

soundness of the language by imposing restriction on covariant subtyp-

ing among inner mixins. We also show how expressive the language is

for code reuse by giving an example.
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1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we overview

the design of McJava. After explaining each notable feature of McJava, we

show an example that illustrates the usefulness of McJava. In Chapter 3,

we develop Core McJava, a core calculus of McJava, that provides assurance

on the soundness of McJava type system. After defining Core McJava with

type derivations and reduction semantics, we show the type soundness the-

orem. Then, in Chapter 4, we present how to compile McJava programs to

Java programs. Some non-trivial issues on implementation are also presented.

In Chapter 5, we develop a new approach to method dispatch on mixin-based

composition, which solves the problem of accidental overriding. This mech-

anism is called selective method combination. We show how this mechanism

works appropriately with the presence of flexible mixin-based subtyping rules

on McJava. In Chapter 6, we discuss how mixins interact with other language

constructs such as generics and ThisType. We also show how the language

(McJava with generics and ThisType) has expressive power for code reuse by

using a graph traversal example. In Chapter 7, we discuss the relationship be-

tween our approach and other related work. Finally, in Chapter 8, we conclude

this dissertation with further research directions.



Chapter 2

McJava: Designing Java with

Mixin-Based Composition

This chapter overviews a programming language McJava, an extension of Java

with mixins. McJava immigrates mixins from the context of dynamically typed

languages such as Flavors [43] and CLOS [37] into a statically typed language.

In McJava, a mixin is explicitly declared with a name, and the name of mixin

can be used as a type (mixin-types). Furthermore, McJava supports more

advanced features of mixins such as higher order mixins [6] and mixin-based

subtyping.

2.1 Mixin Declarations and Mixin-Types

To demonstrate how a mixin is declared in McJava, we start with a very simple

example. Figure 2.1 shows a declaration of mixin Color. This mixin provides

the “color” feature that is intended to be composed with widget classes.

A statement beginning with keyword mixin is a mixin declaration. A mixin

declaration has the following form:

mixin X requires I { ... }

where X denotes the name of mixin and I denotes the interface that the mixin

requires. This means that classes that implement interface I can be composed

with mixin X. For example, both class Label and class Text, shown in Figure

2.2, can be composed with mixin Color, as they implement interface WidgetI.

15



16 Chapter 2 McJava: Designing Java with Mixin-Based Composition

interface WidgetI { void display(Graphics g); }

mixin Color requires WidgetI {

private int color;

void display(Graphics g) {

g.setColor(color);

super.display(g);

...

}

void setColorValue(int color) {

this.color=color; }

int getColorValue() { return this.color; }

}

Figure 2.1: A color mixin

class Label implements WidgetI {

void display(Graphics g) { ... }

}

class Text {

void display(Graphics g) { ... }

}

Figure 2.2: Label and text field classes

It is not necessary for these classes to explicitly declare that they implement

interface WidgetI, as shown by the class Text. A class that implicitly im-

plements a display method (i.e. a class that has a void display(Graphics

g) method without declaring implements WidgetI) may also be composed

with mixin Color, even though declaring the required interface explicitly helps

programmers to understand the program.

Note that the requires clause of mixin declarations is quite different from

the implements clause of ordinary class declarations in that a required inter-
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face in mixin declaration is not used as a type but used as a constraint. In

fact, there is no subtype relation between mixin Color and interface WidgetI,

because Color need not implement WidgetI; it is the Color’s superclass’s

responsibility to implement the interface. The requires clause enables sep-

arate type-checking of mixins. In other words, when a required interface is

declared in a mixin, methods are to be imported to the mixin from a class

to be composed. For example, we can safely invoke super.display(g) in the

display method of mixin Color, that results in invocation of display declared

in Color’s “superclass”.

The advantage of writing required interfaces separately is that they can be

reused in other mixins. For example, interface WidgetI may be reused in other

mixin, namely Font. However, writing required interfaces separately imposes

programmers more workload. McJava therefore allows an anonymous interface

to appear in requires clause for more handy syntax:

mixin Color requires {

void display(Graphics g); } {

...

}

If a mixin requires no interfaces (i.e. a mixin that can be composed with

any classes), we may omit the requires clause.

A composition of mixin Color and class Label is written as Color::Label.

This composition is considered as a subclass that is derived from the superclass

Label, with subclass body declarations being the same as the body of mixin

Color. Similarly, composition Color::Text is considered as a subclass of Text.

In this sense, a mixin is a uniform extension of classes that may be applied to

many different superclasses. Because of this uniformness, we may not declare

a superclass for a mixin by using an extends clause.

Besides this modularity, McJava also provides the useful feature of mixin-

types, a mixin declared is also used as a type. Therefore, we may write the

name Color, for example, in a formal parameter of a method declaration that

results in a method that takes an instance of all the results of composing mixin

Color with composable classes as an argument.

In McJava, it is forbidden to create an instance of a mixin, because an

expression like:
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new Color().display(g)

will result in invoking an unknown method. The design decision is natural,

since a mixin is also known as an abstract subclass. Just as an ordinary ab-

stract class cannot be instantiated in Java, creating an instance of mixin is not

meaningful.

2.2 Higher Order Mixins

We have seen composition of a mixin and a class. A composition of a mixin

and a class is considered to be a class; e.g., we can instantiate a composition

by using new expression like new Color::Label(), or we can declare a new

class that inherits from the composition.

In McJava, a mixin may also be composed with a mixin. For example, the

previous mixin Color may be composed with mixin Font declared in Figure

2.3. This composition, written as Color::Font, is quite different from a com-

position of a mixin and a class; it is regarded as a mixin that has both features

of Color and Font. This mechanism is called higher order mixins, in that a

mixin can be an argument of composition, resulting a new mixin.

As shown before, a mixin declaration does not have an extends clause,

because the superclass of a mixin is not provided in the declaration of the mixin.

However, it is sometimes useful to extend and modify a mixin to refine the

definition of the original mixin. The feature of higher order mixins compensates

this ability.

Note that, in the case of higher order mixins, the right hand side mixin

of composition operator :: need not implement the required interface of left

hand side mixin. The requirements of well-formed composition is informally

illustrated in section 2.4 and formally discussed in Chapter 3.

2.3 Mixin-Based Subtyping

A mixin Color may also be composed with a composition Font::Label, re-

sulting in a new composition Color::Font::Label. The composition oper-

ator :: is associative, that is a result of composing a mixin Color with a
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interface WidgetI { void display(Graphics g); }

mixin Font requires WidgetI {

private String font;

void display(Graphics g) {

g.setFont(font);

super.display(g);

...

}

void setFontName(String font) {

this.font=font; }

String getFontName() { return this.font; }

}

Figure 2.3: A Font mixin

composition Font::Label, written Color::(Font::Label), is the same as

(Color::Font)::Label, a result of composing Color::Font with Label (re-

call that a composition of a mixin and another mixin is also regarded as a

mixin).

A composition Color::Font::Label provides all the methods declared in

Color, Font, and Label. In McJava, the order of method lookup for composi-

tions is well-defined. If a method display is searched on Color::Font::Label,

for instance, Color is searched first, then Font, followed by Label. Because

the order of method lookup controls the behavior of mixin compositions, the

composition operator :: is not commutative. For instance, Color::Font is

not the same type as Font::Color, because the behavior of each composition

may be different. With this restriction, it becomes easier to satisfy the Liskov’s

behavioral subtyping [40].

One of the novel features of McJava is the flexibility of its subtype relation

over compositions. In McJava, a composition is a subtype of all its constituent.

For example, Color::Font::Label is a subtype of Label, Font, and Color. It

is also a subtype of its subsequences, Font::Label, Color::Font and (maybe

somewhat surprisingly) Color::Label. Because the operator :: is not com-
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mutative, the order of composition is significant (i.e. Color::Font is not a

subtype of Font::Color). The further reason of this restriction is, if we do not

require to respect order in subtyping between sequences, Color::Font is a sub-

type of Font::Color that is a subtype of Color::Font. This means subtype

relation is no longer partial order because, as mentioned earlier, Color::Font

6= Font::Color, which will confuse many Java users. However, it is interesting

to investigate whether the type system remains sound with this more flexible

definition of composition subtyping. This issue remains as one of our future

work.

One may wonder what happens when we compose the same mixins like

X::X. Actually, this composition is allowed in McJava and that is a subtype of

X. Even when methods declared in the right hand side X are overridden by their

corresponding methods declaration in the left hand side, we may invoke the

method on the right hand side mixin if the method is declared in the required

interface and called by super. For example, if the following method

int f() { return super.f() * super.f(); }

is declared in X, invoking X::X::C.f() (where C is a class) results in invoking

C.f() four times.

The subtyping rule proposed here solves the problem of subtyping in Java

discussed in section 1.1.2. Suppose we have a mixin Compound:

mixin Compound {

void insertPart(Text doc, Point pos) { ... }

... }

Since Compound::Color::Text is a subtype of Compound::Text, the McJava

type system accepts the following code:

class LibraryServices {

void insertDocPart(Text doc, Compound::Text ct, int pos) {

ct.insertPart(doc, ct.displayPos(pos));

...

}

}



2.4 Mixin Composability 21

Compound::Color::Text cct = new Compound::Color::Text();

LibraryServices ls = new LibraryServices();

...

ls.insertDocPart(doc, ct, pos)

With this subtyping, an immediate superclass of a mixin in the run-time

inheritance chain is no longer necessarily the same as the statically known

superclass. This fact raises another issue when we try to solve the problem of

accidental overriding. It will be explained in Chapter 5.

2.4 Mixin Composability

Adding mixin-types to Java type system requires the type-checker to per-

form additional type-checking. We briefly summarize here what McJava type-

checker does to check the well-typedness of mixin compositions. To ensure that

compiled McJava programs run safely, the type-checker must check whether the

following requirements are met:

• For all the compositions X1:: · · · ::Xn::C, where X1, · · · , Xn are mixins

and C is a class, the composition X2:: · · · ::C must implement all the

interfaces that the mixin X1 requires.

• For all the compositions X::T, where X is a mixin and T is a mixin, a class,

or a composition, if X declares a method m and a method m’ with the

same name and the same formal parameter types as m is also declared

in T, then the return type of m must be the same as the type of m’.

The first rule is for composition of mixins and a class that can be instantiated.

It ensure that no “method not understood” error occurs at run-time. The

second rule corresponds to the Java rule on overriding. In other words, if the

mixin X “overrides” a method declared in T with the different return type, the

compiler reports an error.

2.5 Current Limitations

Current McJava has the following limitations.
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Constructors. McJava forbids to declare a constructor for mixins. Although

this restriction seems to lower usability, we believe that actually it does not. We

may use a coding convention to declare an initializer void initM(...) (where

M is a mixin name) that is responsible for initializing the instance variables of

mixin M.

We impose this restriction to mixins because the role of a constructor is an

instance generator but a mixin cannot be instantiated. A constructor should

have responsibility for initializing not only instance variables of a mixin in

which the constructor is declared but also instance variables of all the super

classes. However, a mixin has no way to know the signature of super class’s

constructors.

Actually, constructors should not exist in mixins but in compositions to

be instantiated. Indeed, Jam [4] takes this approach. Although there are no

way for declaring members and constructors on compositions in McJava, we

may obtain the same effect by declaring a new class whose superclass is a

composition:

class H extends M::C {

H(...) { super(...); this.initM(...); }

}

Static Members in Mixins. McJava forbids to declare static members in-

side mixins. There are some conceivable choices to define semantics of static

members in mixins. One approach is that a member declared with static

modifier inside a mixin is not considered as a static member of the mixin, but

of its compositions. Jam takes this approach because it conforms to copy prin-

ciple (explained in Chapter 7) well. Another approach is to share only one copy

of the static members among all the compositions of that mixin. Currently we

postpone the decision which approach to take.

Field Members in Mixins. Mixins are allowed to declare field members,

but all fields must be declared as private. This restriction is due to the field

hiding problem that is also discussed in Jam. Jam takes another approach that

allows declaration of public field members. There is a design tradeoff between

these two approaches. McJava may also take Jam’s approach, although a
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little further research is required to ensure that allowing public field members

in mixins is also sound, because the core language of McJava (explained in

Chapter 3) does not allow field hiding.

2.6 Case Study: Integrated Systems

To explain the expressive power of McJava, we show an interesting example of

integrated systems as a case study. In [58], an integrated system is defined as

“a collection of software tools that work together, freeing the user from having

to coordinate them manually.” For example, an integrated system with tools

for text editing, compiling, and debugging will ensure that when the debugger

reaches a breakpoint, the editor scrolls to the corresponding source statement.

One of the main problems in implementing an integrated system is its dif-

ficulty for evolution. Managing the complexity of integrated systems is hard.

The solution of this problem is separating the components (i.e. the integrated

software tools) and their relations at the design and implementation levels;

however, Sullivan et al. argued that an integrated system implemented by a

conventional object-oriented language and even by an aspect-oriented language

like AspectJ [38] hardly evolves [57]1. In this section, we propose a solution to

this problem with McJava, and show how the mechanism of mixin-types is used

in this solution. This solution is partial, because it assumes that components

and their relations are statically known. However, this example well describes

how the mechanism of mixin-types supports modular construction of program

pieces.

We show a simplified example of integrated systems originally described in

[57]. In this example, the software tools that are subject to integration are

binary objects that have two states, on and off. We call these objects Bits. An

instance of Bit has operations named set and clear, to change its state to “on”

and “off,” respectively. Binary relations, Equality and Trigger, are defined

between Bits. The Equality relation always makes the states of the related

Bits the same, while the Trigger relation activates the target Bit to be “on” if

the source Bit becomes “on,” but takes no action on the other situations.

For example, let us assume the structure in Figure 2.4. In this system, the

1Enhancements of AspectJ that can solve this problem are also proposed [52, 50].
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b1 b2

b3b4

Equality

Equality

Trigger

Figure 2.4: An integrated system

four objects, b1, b2, b3 and b4, are instances of Bit; b1 and b2, and b2 and

b3 are connected by Equality relations; b3 is a trigger of b4. If b1 receives a

message “set,” then the “set” message is sent to b2, that also activates sending

of the “set” message to b3. Furthermore, the “set” message is sent to b4,

because b3 is a trigger of b4. However, no matter what is sent to b4, nothing

happens to b3.

The problem is to make this system evolvable, separating the implementa-

tion of the Bit objects from the Equality and Trigger relations, and make this

system modular and scalable. Modularity means implementation of relations

should be able to adapt to other implementations of Bit objects, and the imple-

mentation of the Bit objects should be reusable in other contexts. Scalability

means that we may add new Bit objects and even new relations other than

Equality or Trigger to that system with no difficulty.

Figure 2.5 gives an implementation of Equality relation. An Equality is

a binary relation, so it has two instance variables role1 and role2 to hold

the Bit objects that are linked with the Equality relation. But we would like

to apply this Equality to other implementations of Bit objects. Therefore,

the type of role1 and role2 is declared as EqAdaptor that abstracts a set of

operations the Equality is interested in.

EqAdaptor is declared as a mixin in Figure 2.6. It declares methods set()

and clear(). Since those methods invoke super.set() and super.clear()

respectively, EqAdaptor requires the interface eqI that declares set() and

clear(). EqAdaptor may be composed with any class that implements the

methods declared in eqI. For example, the following class Bit may be composed
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class Equality {

public boolean busy;

EqAdaptor role1, role2;

public void join1(EqAdaptor e) {

role1=e;

e.equalities.add(this);

}

public void join2(EqAdaptor e) {

role2=e;

e.equalities.add(this);

}

public EqAdaptor getOpponent(EqAdaptor e){

if (role1 == e) return role2;

else if (role2 == e) return role1;

else return null;

}

}

Figure 2.5: Equality in McJava

with EqAdaptor.

class Bit {

boolean state=false;

void set() { state=true; }

void clear() { state=false; }

boolean get() { return state; }

}

At first, the method set()/clear() of EqAdaptor invokes the correspond-

ing method declared in the superclass (for example, the set()/clear() of Bit

class). Then, it sends the set()/clear() message to all the objects that have

the Equality relation linkage with the sender. The instance variable busy

declared in Equality is a flag that ensures the transition of these method

invocations does not end up with an infinite loop.
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interface eqI {

void set();

void clear();

}

mixin EqAdaptor requires eqI {

public Vector equalities = new Vector();

public void set() {

super.set();

for (Iterator i=equailties.iterator();

i.hasNext(); ) {

Equality e = (Equality)i.next();

if (!e.busy) {

e.busy = true;

e.getOpponent(this).set();

e.busy = false; }}}

public void clear() {

super.clear();

for (Iterator i=equalities.iterator();

i.hasNext(); ) {

Equality e = (Equality)i.next();

if (!e.busy) {

e.busy = true;

e.getOpponent(this).clear();

e.busy = false; }}}

}

Figure 2.6: A role for equality in McJava
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class Main {

public static void main(String[] args) {

EqAdaptor::Bit b1=new EqAdaptor::Bit();

EqAdaptor::Bit b2=new EqAdaptor::Bit();

TrAdaptor::EqAdaptor::Bit b3 =

new TrAdaptor::EqAdaptor::Bit();

Bit b4 = new Bit();

Equality e1 = new Equality();

Equality e2 = new Equality();

Trigger t1 = new Trigger();

e1.join1(b1); e1.join2(b2);

e2.join1(b2); e2.join2(b3);

t1.join1(b3); t1.join2(b4);

...

}

}

Figure 2.7: An example program of integrated systems

The Trigger relation is also implemented in the same way. Then, the inte-

grated system may be implemented as in Figure 2.7. Because b1 and b2 only

join in the Equality relation, they are created as instances of the composi-

tion of EqAdaptor and Bit. On the other hand, b3 is created as an instance

of the composition of TrAdaptor, EqAdaptor and Bit (TrAdaptor is a mixin

for Trigger), because it joins in both the Equality relation and the Trigger

relation.

This solution is modular because the implementation of relations may be

adapted to other implementations of Bit objects, if they implement the meth-

ods declared in eqI. Of course, the implementation of the Bit objects may be

reused in other contexts. Furthermore, this solution is scalable because we may

add new Bit objects easily via join methods declared in the relations. Adding

new relations is also easy.

One of the keys of this solution is using mixin EqAdaptor that abstracts
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the operations in which Equality is interested, and ability to use the name

EqAdaptor as a type name in formal parameters and field declarations. For

example, we may also write the same example by using generics [2]; using

generics, we may declare a mixin as a generic class whose superclass is a type

parameter. However, a generic class is not a type; therefore, we must declare

the join1 method in Equality as

<T extends Bit> public void join1(EqAdaptor<T> e) { .. }

which makes the program more verbose. Furthermore, sometimes we should

explicitly pass an actual type to the type parameter T that cannot be in-

ferred in a method invocation; e.g., we will write the method invocation as

e2.<Bit>join2(b3). By allowing to use the name of mixin as a type, we may

avoid this prolixity.

Another key of this solution is using this inside mixins. We use this feature

in the method invocation e.getOpponent(this) in EqAdaptor. At first, this

feature looks trivial; however, it is not. Using this inside mixins triggers some

troublesome problems. For example, Jam [4], one of the extensions of Java

with mixins, does not allow it. McJava is designed to safely use this inside

mixins. This safety is discussed in Chapter 3. We will return to the relationship

between our approach and other mixin-related systems in Chapter 7.

2.7 Summary

In this chapter, we have overviewed the design of McJava. McJava supports a

mixin to be explicitly declared with a name, introducing additional modularity

to Java. In McJava, a mixin name is also used as a type. The McJava’s

advanced features of higher order mixins and mixin-based subtyping promote

reusability of programs still further. Besides simple examples such as Color

and Font, this chapter also illustrates a more interesting example of integrated

systems.
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Core McJava: A Core Calculus

of McJava

Type soundness is one of the most basic properties of programming languages.

In Chapter 2, we have designed McJava, an extension of Java with mixins. To

investigate whether the property of type soundness still holds in McJava, we

should carefully study how the features described in Chapter 2 interact with

the existing constructs of Java.

This chapter presents Core McJava, a small calculus of McJava that is suit-

able for proving the type soundness theorem. The design of Core McJava is

based on FJ [34], a minimum core language of Java. FJ is a very small subset of

Java, focusing on just a few key constructs that characterize the Java type sys-

tem. FJ restricts on Java syntax so that FJ constructors always take the same

stylized form; i.e., there is one parameter for each field, with the same name

as the field. FJ provides no side-effective operations, that means a method

body always consists of return statement followed by an expression. Because

FJ provides no side-effects, the only place where assignment operations may

appear is within a constructor declaration. In FJ, all the fields are initialized

at the object instantiation time. Once initialized, an FJ object never changes

its state. FJ does not support modifiers of members and constructors, that

means all the members and constructors of classes are public. Interfaces are

not supported by FJ either.

Core McJava shares the same features of FJ explained above. In the fol-

lowing subsections, we present the syntax and operational semantics of Core

29
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T ::= X̄ :: C | X̄

LC ::= class C extends X̄ :: C {T̄ f̄; KC M̄}
LX ::= mixin X requires I {T̄ f̄; KX M̄}
LI ::= interface I { M̄I; }

KC ::= C(S̄ ḡ, T̄ f̄){super(ḡ); this.f̄=f̄;}
KX ::= X(T̄ f̄){ this.f̄=f̄;}
M ::= T m(T̄ x̄){ return e;}
MI ::= T m(T̄ x̄)

e ::= x | e.f | e.m<T̄>(ē) | new X̄ :: C(ē) | (T )e

Figure 3.1: Abstract syntax of Core McJava

McJava and its type soundness theorem.

3.1 Syntax

The abstract syntax of Core McJava is given in Figure 3.1. In this chapter,

the metavariables d and e range over expressions; KC and KX range over

constructor declarations; m and n range over method names; M ranges over

method declarations; C and D range over class names; X and Y range over

mixin names; R, S, T , U and V range over type names; I ranges over interface

names; x ranges over variables; f and g range over field names. As in FJ,

we assume that the set of variables includes the special variable this, which

is considered to be implicitly bound in every method declaration. Unlike full

McJava, and as in FJ, Core McJava does not allow classes to implement in-

terfaces; however, Core McJava provides interfaces that are used only in the

requires clause. This is a primary feature of McJava that cannot be excluded

from the core calculus.

Core McJava imposes some syntactic restrictions for simplicity. First, a

mixin in Core McJava must have exactly one constructor declaration, because

it is the only place where assignments may appear. A constructor in mixin

may be considered as an init function explained in section 2.5 that is implicitly

invoked when a composition of the mixin is instantiated. Second, a method



3.2 Class Table 31

invocation expression e0.m(ē) is annotated with the static types T̄ of m’s argu-

ments, written e0.m<T̄>(ē). This annotation is necessary because, unlike FJ,

Core McJava actually provides method overloading. To capture the McJava’s

feature of overloaded method resolution, that is, which method to be invoked

is determined at compile time, a method invocation expression necessarily re-

tains the static types of its arguments. We include this feature in Core McJava,

because it is crucial for the problem we are studying, namely the overloading

problem in Jam (see Chapter 7). Because of these conditions, Core McJava

is not a subset of McJava whereas FJ is a subset of Java; instead, we view

Core McJava as an intermediate language to which the user’s programs are

translated. This translation is straightforward.

We write f̄ as a shorthand for a possibly empty sequence f1, · · · , fn and

write M̄ as a shorthand for M1 · · ·Mn. The length of a sequence x̄ is written

as #(x̄). An empty sequence is denoted by ·. Similarly, we write “T̄ f̄” as a

shorthand for “T1 f1, · · · , Tn fn”, “T̄ f̄;” as a shorthand for “T1 f1; · · ·Tn fn;”,

“this.f̄ = f̄;” as a shorthand for “this.f1 = f1; · · · this.fn = fn;”, and X̄

as a shorthand for X1 :: · · · :: Xn.

As in Figure 3.1, there are two kinds of types: X̄ and X̄ :: C. The former de-

notes a mixin-mixin composition that is generated by composing mixin names,

while the latter denotes mixin-class composition that is a result of composing

mixin names (possibly an empty sequence) and a class name. The former is a

mixin that cannot be instantiated, while the latter is a concrete class that can

be instantiated.

We write T <: U when T is a subtype of U . Subtype relations between

classes, mixins, and compositions are defined in Figure 3.2, i.e., subtyping is

a reflexive and transitive relation of the immediate subclass relation given by

the extends clauses in class declarations and mixin compositions.

3.2 Class Table

A Core McJava program is a pair of (CT, e) of a class table CT and an ex-

pression e. A class table is a map from class names and mixin names to

class declarations and mixin declarations. The expression e may be consid-

ered as the main method of the “real” McJava program. The class table is
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T <: T (S-REFL)

S̄ :: T :: Ū <: S̄ :: Ū (S-COMP)

T <: S S <: U

T <: U
(S-TRANS)

class C extends X̄ :: D {...}
C <: X̄ :: D

(S-CLASS)

Figure 3.2: Subtype relation

assumed to satisfy the following conditions: (1) CT (C) = class C ... for

every C ∈ dom(CT ); (2) CT (X) = mixin X ... for every X ∈ dom(CT );

(3)Object 6∈ dom(CT ); (4) T ∈ dom(CT ) for every class name and mixin name

appearing in ran(CT ); (5) there are no cycles in the subtype relation induced

by CT ; (6) there are no field hidings of a class or a mixin by its subtype, whose

subtyping relation is induced by CT .

In the inference hypothesis, we abbreviate CT (C) = class C... and

CT (X) = mixin X ... as class C ... and mixin X ..., respectively.

3.3 Auxiliary functions

For the typing and reduction rules, we need a few auxiliary definitions, given

in Figure 3.3, 3.4 and 3.5.

The fields of type T , given in Figure 3.3, written fields(T ), is a sequence

T̄ f̄ pairing the type of each field with its name. If T is a class, fields(T ) is a

sequence for all the fields declared in class T and all of its superclasses. If T is

a mixin, fields(T ) is a sequence for all the fields declared in that mixin. If T

is a composition, fields(T ) is a sequence for all the fields declared in all of its

constituent mixins and a class. For the field lookup, we also have the definition

of ftype(fi, T ) that is a type of field fi declared in T . In contrast with McJava,

field hiding is not allowed in Core McJava.
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fields(Object) = ·

class C extends X̄ :: D {T̄ f̄; KC M̄}
fields(X̄ :: D) = S̄ ḡ

fields(C) = S̄ ḡ, T̄ f̄

mixin X requires I {T̄ f̄; KX M̄}
fields(X) = T̄ f̄

fields(X) = T̄ f̄ fields(T ) = S̄ ḡ

fields(X :: T ) = S̄ ḡ, T̄ f̄

fields(T ) = T̄ f̄

ftype(fi, T ) = Ti

Figure 3.3: Field lookup

The type of method m declared in type T with argument types T̄ is given

by mtype(m, T̄ , T ). The function mtype is defined in Figure 3.4 by S that is a

result type. If T is a composition, the left operand of :: is searched first. If m

with argument types T̄ is not found in T , we define it nil. The type of method

m in interface I is also defined in the same way. Similarly, the body of method

m declared in type T with argument types T̄ , written mbody(m, T̄ , T ), is a

pair, written x̄.e of a sequence of parameters x̄ and an expression e (Figure

3.5). As mentioned earlier, in contrast with FJ, method overloading is allowed

in Core McJava.

3.4 Typing

The typing rule for compositions is given in Figure 3.6. A composition is well-

formed if (1) there are no fields declared with the same name both in the left

component and the right component of the composition, (2) there is no method

collision, that is, if some methods are declared with the same name and with the
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mtype(m, T̄ , Object) = nil

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mtype(m, S̄, C) = S

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mtype(m, S̄, C) = mtype(m, S̄, X̄ :: D)

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mtype(m, S̄,X) = S

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mtype(m, S̄,X) = mtype(m, S̄, I)

interface I { M̄I; }
T m(T̄ x̄) ∈ M̄I

mtype(m, T̄ , I) = T

interface I { M̄I; }
T m(T̄ x̄) 6∈ M̄I

mtype(m, T̄ , I) = nil

mtype(m, T̄ ,X) = T

mtype(m, T̄ , X :: T0) = T

mtype(m, T̄ ,X) = nil

mtype(m, T̄ , T0) = T

mtype(m, T̄ ,X :: T0) = T

Figure 3.4: Method type lookup
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mbody(m, T̄ , Object) = nil

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mbody(m, S̄, C) = x̄.e

class C extends X̄ :: D {T̄ f̄; KC M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mbody(m, S̄, C) = mbody(m, S̄, X̄ :: D)

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } ∈ M̄

mbody(m, S̄,X) = x̄.e

mixin X requires I {T̄ f̄; KX M̄}
S m(S̄ x̄){ return e; } 6∈ M̄

mbody(m, S̄, X) = nil

mbody(m, T̄ , X) = x̄.e

mbody(m, T̄ ,X :: T ) = x̄.e

mbody(m, T̄ ,X) = nil

mbody(m, T̄ , T ) = x̄.e

mbody(m, T̄ ,X :: T ) = x̄.e

Figure 3.5: Method lookup
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fields(X) ∩ fields(T ) = ∅ interface I {M̄I}
mixin X requires I { ... M̄ }

∀S m(T̄ x̄){...} ∈ M̄ mtype(m, T̄ , X) = mtype(m, T̄ , T ) or

mtype(m, T̄ , T ) = nil

If T is a composition X̄ :: C, then

∀(U n(S̄ x̄)) ∈ M̄I mtype(n, S̄, I) = mtype(n, S̄, T )

X :: T ok

(T-COMP)

Figure 3.6: Well-formed composition

same argument types in the left and the right, the return type of both methods

must be the same, and (3) for all the methods declared in the interface that is

required by the left mixin, the right operand of the composition declares the

methods named and typed as the same as the interface. Well-formedness of

class types and mixin types is straightforward and omited in this Figure.

Figure 3.7 shows the typing rules for expressions. An environment Γ is a

finite mapping from variables to types, written x̄ : T̄ . The typing judgment

for expressions has the form Γ ` e : T , read “in the environment Γ, expression

e has type T”. These rules are syntax directed, with one rule for each form

of expression. Most of them are straightforward extension of the rules in FJ.

The typing rules for constructor and method invocations check that the type

of each argument is a subtype of the corresponding formal parameter. The

typing rule for constructor invocation also assures that there are no instances

of mixins and mixin-mixin compositions.

Figure 3.8 shows the typing rules for methods, classes and mixins. The type

of the body of a method declaration is a subtype of the declared type, and, for

a method in a class, the static type of the overriding method is the same as that

of the overridden method. A class definition is well-formed if all the methods

declared in that class and the constructor are well-formed. Similarly, a mixin

is well-formed if all the methods declared in that mixin are well-formed.
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Γ ` x : Γ(x) (T-VAR)

Γ ` e0 : S ftype(f, S) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : S mtype(m, S̄, S) = T

Γ ` ē : T̄ T̄ <: S̄

Γ ` e0.m<S̄>(ē) : T
(T-INVK)

fields(X̄ :: C) = S̄ f̄ Γ ` ē : T̄ T̄ <: S̄

X̄ :: C ok

Γ ` new X̄ :: C(ē) : X̄ :: C
(T-NEW)

Γ ` e0 : S S <: T T ok

Γ ` (T )e0 : T
(T-UCAST)

Γ ` e0 : S T <: S T 6= S T ok

Γ ` (T )e0 : T
(T-DCAST)

Γ ` e0 : S T 6<: S S 6<: T T ok

stupid warning

Γ ` (T )e0 : T
(T-SCAST)

Figure 3.7: Expression typing

3.5 Dynamic Semantics

The reduction relation is of the form e −→ e
′
, read “expression e reduces to

expression e
′
in one step”. We write −→∗ for the reflexive and transitive closure

of −→.

The reduction rules are given in Figure 3.9. There are three reduction rules,

one for field access, one for method invocation, and one for casting. The field

access reduces to the corresponding argument for the constructor. Due to the

stylized form of object constructors, the constructor has one parameter for
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x̄ : T̄ , this : C ` e0 : U0 U0 <: T0

class C extends X̄ :: D {...}
T0 ok T̄ ok

if mtype(m, T̄ , X̄ :: D) = S0, then S0 = T0

T0 m(T̄ x̄){ return e0; } OK IN C

(T-CMETHOD)

x̄ : T̄ , this : X ` e0 : S0 S0 <: T0

T0 ok T̄ ok

mixin X requires I {...}
T0 m(T̄ x̄){ return e0; } OK IN X

(T-XMETHOD)

KC = C(S̄ ḡ, T̄ f̄){super(ḡ); this.f̄=f̄;}
fields(X̄ :: D) = S̄ ḡ M̄ OK IN C

X̄ :: D ok T̄ ok

class C extends X̄ :: D {T̄ f̄; KC M̄} OK
(T-CLASS)

KX = X(T̄ f̄){ this.f̄=f̄;}
M̄ OK IN X T̄ ok

mixin X {T̄ f̄; KX M̄} OK
(T-MIXIN)

Figure 3.8: Well-formed definitions

each field, in the same order as the fields are declared. The method invocation

reduces to the expression of the method body, substituting all the parameter x̄

with the argument expressions d̄ and the special variable this with the receiver

(we write [d̄/x̄, e/y]e0 for the result of substituting x1 by d1,...,xn by dn and y

by e in e0). Note that a method lookup in method invocation uses static types

of arguments, using type annotation T̄ .

3.6 Properties

We show that Core McJava is type sound. Intuitively, the step of proving Core

McJava type soundness theorem is almost the same as that of FJ, but details
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Computation:

fields(X̄ :: C) = T̄ f̄

new X̄ :: C(ē).fi −→ ei

(R-FIELD)

mbody(m, T̄ , X̄ :: C) = x̄.e0

new X̄ :: C(ē).m<T̄>(d̄) −→ [d̄/x̄, new X̄ :: C(ē)/this]e0

(R-INVK)

X̄ :: C <: T

(T )new X̄ :: C(ē) −→ new X̄ :: C(ē)
(R-CAST)

Congruence:

e0 −→ e
′
0

e0.f −→ e
′
0.f

(RC-FIELD)

e0 −→ e
′
0

e0.m<T̄>(ē) −→ e
′
0.m<T̄>(ē)

(RC-INVK-RECV)

ei −→ e
′
i

e0.m<T̄>(· · · , ei, · · · ) −→ e0.m<T̄>(· · · , e
′
i, · · · )
(RC-INVK-ARG)

ei −→ e
′
i

new X̄ :: C(· · · , ei, · · · ) −→ new X̄ :: C(· · · , e
′
i, · · · )

(RC-NEW)

e0 −→ e
′
0

(T )e0 −→ (T )e
′
0

(RC-CAST)

Figure 3.9: Operational semantics
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vary a little. We start by some lemmas used in the proof of type soundness.

Lemma 3.6.1 If ftype(f, U) = T , then ftype(f, S) = T for all S <: U .

Proof. Straightforward induction on the derivation of subtype relation <: and

ftype. 2

Lemma 3.6.2 If mtype(m, T̄ , U) = T0, then mtype(m, T̄ , T ) = T0 for all

T <: U .

Proof. Straightforward induction on the derivation of subtype relation <:,

mtype and T-COMP. Note that whether m with argument types T̄ is defined

in C or not, mtype(m, T̄ , C) = mtype(m, T̄ , X̄ :: D) where class C extends

X̄ :: D {...}. Similarly, note that whether m with argument types T̄ is

defined in X or not, mtype(m, T̄ ,X :: T ) = mtype(m, T̄ ,X) (see the rule

T-COMP). 2

Lemma 3.6.3 If Γ, x̄ : S̄ ` e : U, Γ ` d̄ : R̄ where R̄ <: S̄, then Γ ` [d̄/x̄]e :

T for some T <: U .

Proof. By induction on the derivation of Γ, x̄ : S̄ ` e : U .

Case T-VAR.

e = x U = Γ(x)

If x 6∈ x̄, then the conclusion is immediate, since [d̄/x̄]x = x. If x = xi, and

U = Si, then letting Ri = T finishes the case because [d̄/x̄]x = [d̄/x̄]xi = di,

di : Ri and Ri <: Si = U .

Case T-FIELD.

e = e0.fi Γ, x̄ : S̄ ` e0 : X̄ :: C

fields(X̄ :: C) = T̄ f̄ U = Ti

By the induction hypothesis, there is some T0 such that Γ ` [d̄/x̄]e0 : T0

and T0 <: X̄ :: C. Then, by Lemma 3.1, ftype(fi, T0) = ftype(fi, X̄ :: C).

Therefore, by the rule T-FIELD, Γ ` ([d̄/x̄]e0).fi : Ti.

Case T-INVK.

e = e0.m(ē) Γ, x̄ : S̄ ` e0 : X̄ :: C mtype(m, V̄ , X̄ :: C) = U

Γ, x̄ : S̄ ` ē : Ū Ū <: V̄
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By the induction hypothesis, there are some T0 and X̄ such that

Γ ` [d̄/x̄]e0 : T0 T0 <: X̄ :: C

Γ ` [d̄/x̄]ē : T̄ T̄ <: Ū

By Lemma 3.2, mtype(m, V̄ , T0) = mtype(m, V̄ , X̄ :: C) = U . Then, by S-

TRANS, T̄ <: V̄ . Therefore, by the rule T-INVK, Γ ` [d̄/x̄]e0.m([d̄/x̄]ē) : U .

Case T-NEW.

e = new X̄ :: C(ē) fields(X̄ :: C) = Ū f̄

Γ, x̄ : S̄ ` ē : T̄ T̄ <: Ū

By the induction hypothesis, there are some V̄ such that Γ ` [d̄/x̄]ē : V̄ and

V̄ <: T̄ . Then, by the rule S-TRANS, V̄ <: Ū . Therefore, by the rule

T-NEW, Γ ` new X̄ :: C([d̄/x̄]ē) : X̄ :: C.

Case T-UCAST.

e = (U)e0 Γ, x̄ : S̄ ` e0 : T T <: U

By the induction hypothesis, there are some V such that Γ ` [d̄/x̄]e0 : V and

V <: T . Then, by the rule S-TRANS, V <: U . Therefore, by the rule

T-UCAST, Γ ` (U)([d̄/x̄]e0) : U .

Case T-DCAST.

e = (U)e0 Γ, x̄ : S̄ ` e0 : T U <: T U 6= T

By the induction hypothesis, there are some V such that Γ ` [d̄/x̄]e0 : V and

V <: T . If V <: U or U <: V , then Γ ` (U)([d̄/x̄]e0) : U by the rule T-

UCAST or T-DCAST, respectively. On the other hand, by the rule T-SCAST,

Γ ` (U)([d̄/x̄]e0) : U (with a stupid warning).

Case T-SCAST.

e = (U)e0 Γ, x̄ : S̄ ` e0 : T U 6<: T T 6<: U

By the induction hypothesis, there are some V such that Γ ` [d̄/x̄]e0 : V and

V <: T . If V 6<: U , then, by the rule T-SCAST, Γ ` (U)([d̄/x̄]e0) : U (with a

stupid warning). If V <: U , then, by the rule T-UCAST, Γ ` (U)([d̄/x̄]e0) : U .

2
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Lemma 3.6.4 If Γ ` e : T where Γ does not include x, then Γ, x : U ` e : T .

Proof. Straightforward induction. 2

Lemma 3.6.5 If mtype(m, Ū, X̄ :: C) = U and mbody(m, Ū, X̄ :: C) = ~x.e,

then, for some U0 with X̄ :: C <: U0, there exists T <: U such that

x̄ : Ū , this : U0 ` e : T .

Proof. By induction on the derivation of mbody. In the base case (where m

is defined in CT (T0)), it is easy to prove by the rule T-CMETHOD, if T0 is a

class type, or by the rule T-XMETHOD, if T0 is a mixin type. The induction

step is also straightforward. 2

From the lemmas established above, we derive the type soundness theorem

for Core McJava:

Theorem 3.6.1 (Subject Reduction) If Γ ` e : T and e −→ e
′
, then Γ `

e
′
: T

′
for some T

′
<: T .

Proof. By induction on a derivation of e −→ e
′
.

Case R-FIELD.

e = (new X̄(C)(ē)).fi e
′
= ei fields(X̄(C)) = Ū f̄

By the rule T-FIELD, we have Γ ` new X̄ :: C(ē) : Ȳ :: D, T = Ui for some

Z̄ :: E. Then, by the rule T-NEW, we have Γ ` ē : T̄ , T̄ <: Ū , Ȳ :: D = X̄ ::

C. In particular, Γ ` ei : Ti, finishing the case, since Ti <: Ui.

Case R-INVK.

e = (new X̄ :: C(ē).m(d̄) mbody(m, T̄ , X̄ :: C) = x̄.e0

e
′
= [d̄/x̄, (new X̄ :: C(ē))/this]e0

By the rule T-INVK and T-NEW, we have

Γ ` new X̄ :: C : X̄ :: C mtype(m, T̄ , X̄ :: C) = T

Γ ` d̄ : Ū Ū <: T̄

for some Ū and T̄ . By Lemma 3.5, x̄ : T̄ , this : T0 ` e0 : S for some T0 and S

where X̄ :: C <: U0 and S <: T . By Lemma 3.4, Γ, x̄ : T̄ , this : T0 ` e : S.

Then, by Lemma 3.3, Γ ` [d̄/x̄, (new X̄ :: C(ē))/this]e0 : V for some V <: S.
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Then we have V <: T by transitivity of <:. Finally, letting V = T
′
finishes

this case.

Case R-CAST.

e = (U)(new X̄ :: C(ē)) X̄ :: C(ē) <: U e
′
= new X̄ :: C(ē)

Because of the assumption X̄ :: C <: T , the proof of Γ ` (T )new X̄ :: C(ē) : U

must end with the rule T-UCAST. By the rules T-UCAST and T-NEW, we have

Γ ` (U)new X̄ :: C(ē) : U .

The cases for congruence rules are easy. 2

Theorem 3.6.2 (Progress) Suppose e is a well-typed expression.

1. If e includes new X̄ :: C(ē).f as a subexpression, then fields(X̄ :: C) =

T̄ f̄ and f ∈ f̄ for some T̄ and f̄ .

2. If e includes new X̄ :: C(ē).m<T̄>(d̄) as a subexpression, then mbody(m, T̄ , X̄ ::

C) = x̄.e0, ∅ ` d̄ : S̄ where S̄ <: T̄ , and #(x̄) = #(d̄) for some x̄ and

e0.

Proof. If e has new X̄ :: C(ē).f as a subexpression, by well-typedness of the

subexpression, it is easy to check that fields(X̄ :: C) is well defined and f

appears in it. Similarly, if e has new X̄ :: C(ē).m<T̄>(d̄) as a subexpression,

it is also easy to show mbody(m, T̄ , X̄ :: C) = x̄.e0 and #(x̄) = #(d̄), since

mtype(m, T̄ , X̄ :: C) = U where #(x̄) = #(T ). 2

To state type soundness formally, we introduce a value v of an expression

e by v ::= new X̄ :: C(ē) .

Theorem 3.6.3 (Core McJava Type Soundness) If ∅ ` e : T and e −→∗

e
′
with e

′
a normal form, then e

′
is either (1) a value v of e with ∅ ` v : U

and U <: T , or (2) an expression containing (U)new T (ē) where U 6<: T .

Proof. Immediate from Theorem 3.1 and 3.2. 2

3.7 Summary

In this chapter, we have defined Core McJava, a core calculus of McJava.

The definition contains all the key constructs that characterize the McJava
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type system such as mixin declarations, mixin composition operator ::, mixin-

based subtyping, and so on (it also contains method overloading). The dynamic

semantics is defined with simple reduction semantics. After the definition, we

have proven type soundness of Core McJava that ensures McJava type system

is sound.



Chapter 4

Implementation of McJava

We have designed an extension of Java with mixins, and formalize it at an

abstract level. To design a useful language, however, we should also think

about compilation of the language into the format that the run-time system

can efficiently execute. Another criteria for usefulness is compatibility. The

new language should run efficiently on the existing standard platforms, and

existing libraries should also be able to be used without any changes.

In this chapter, we discuss a compilation strategy of McJava. Our McJava

compiler compiles McJava programs into correct Java programs (i.e. they are

guaranteed to be compiled into Java byte code by using Java compilers) thus

making it runnable on the standard Java virtual machine.

4.1 Outline of the Compilation Strategy

Besides the class system provided by Java, McJava provides the construct of

mixins and the mechanism of mixin-based composition. The problem is how

to map these constructs into Java. It may appear that the body of a mixin can

be easily translated into a Java class; however, handling of composition is not

so simple. As mentioned in the previous chapters, the subtype relation defined

among compositions is very flexible. Therefore, how to map the compositions

into a single inheritance language (i.e. Java) is a non-trivial problem.

Figure 4.1 outlines how the composition M::C, where M is a mixin and C is a

class, is translated into Java hierarchies; it generates an interface hierarchy and

a class hierarchy (we use a symbol ¡
@ to denote subtype relation). Each

45
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M::C

M
void g() { ... }

C
int f(M m) { ... }
boolean f(M::C h) { ... }

_M
void g();

_C
int f(_M m);
boolean f(_M_C h);

_M_C M_C
void g() { ... }

C (unchanged)
int f(_M m) { ... }
boolean f(_M_C h) { ... }

compile

interface hierarchy class hierarchy

Figure 4.1: Translation into Java classes

interface in the interface hierarchy corresponds to each type in McJava. In this

hierarchy, McJava subtyping is preserved (note that in McJava an interface

may inherit from multiple interfaces). The top level interfaces (i.e. M and C)

declare methods extracted from definitions contained in McJava classes and

mixins. At the same time, the definitions contained in mixins are copied into

the class hierarchy. This class hierarchy preserves the inheritance relationship

of mixin-based composition; that is, the relation of “M inherits from C” is

translated into “M C inherits from C.” For each class name, we use a string

concatenating the name of mixin and the name of superclass with a special

character ‘ ’.1

In order to gain a more concrete image of the translation process, we use an

example code shown in Figure 4.2. We also note that this program is ill-typed

in Jam [4], which is discussed in Chapter 7.

Before executing the translation, the McJava compiler prepares a table that

consists of names of classes and mixins, and their declarations, shown in Table

1This implies that our compilation triggers code duplication.
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class C {

int f(M m) { ... }

boolean f(M::C h) { ... }

}

interface I { /* empty */ }

mixin M requires I {

void g() {

int i = new C().f(this);

...

}

}

class Test {

public static void main(String args[]) {

new M::C().g();

}

}

Figure 4.2: An example program illustrating the compilation

4.1. The translator processes all the entries of this table to generate Java

classes and interfaces.

Table 4.1: Prepared class table

Name Declaration body

C class C { int f(M m) { ... }
boolean f(M::C h) ...

M mixin M requires I { void g() { ...

Test class Test { public static void main ...

At the first step, the translator creates a file C.java from the entry C.

Then, it writes the body of class declaration into that file. In the beginning,

the translator just copies the body of class C into C.java. Eventually, the

translator encounters a composition type M::C that is not allowed in Java
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syntax. To compile this composition, the translator generates a new class M C

and a new interface M C, as shown in Figure 4.1, and replaces the occurrence

of M::C with the interface type M C (actually, the occurrence of mixin type M

is also replaced with the interface type M):

class C {

int f(_M m) { ... }

boolean f(_M_C h) { ... }

}

The class M C extends the class C and implements the interface M C that

extends interfaces M and C. Those interfaces contain interface method decla-

rations extracted from the mixin M and the class C, respectively. The class M C

contains definitions copied from the mixin M:

interface _M { void g(); }

interface _C { int f(_M m); boolean f(_M_C h); }

interface _M_C extends _M, _C { }

class M_C extends C implements _M_C {

void g() {

int i = new C().f((_M)this);

...

}

}

Note that this, an argument of method invocation f, is type-casted to M.

This casting is required, because in the translation this has type M C that

is subtype of both M and C, but M and C are not comparable. Without the

type-cast, if class C has another method String f(C m), the translated Java

program will be ill-typed2.

At the second step, the translator processes the entry M. Because mixin

implementation is never executed unless its composition is instantiated, the

translator only extracts the interface from the mixin M to generate interface M.

2We comment that this kind of fix may work as well for Jam to relax a little bit the copy
principle.
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That interface has been generated in the previous step; therefore, in this case

this step is actually skipped.

Finally, the translator processes the entry Test. In the body of class Test,

the translator encounters the composition M::C again. However, in this case it

is used as an instance creator. Since the interface type cannot be used for this

purpose, in this case we replace M::C with the class M C:

class Test {

public static void main(String args[]) {

new M_C().g();

}

}

Note that the translation does not change any occurrence of class types

and interface types; e.g. the occurrence of String is left unchanged. This

property is to guarantee backward compatibility to the existing libraries. We

would not like to make any changes on the libraries that contain only pure

Java constructs.

So far, a simple case is explained. We now describe a more general case:

• A composition X1::· · · ::Xn::C, where each Xi (i ∈ 1 · · ·n) is a mixin and

C is a class, is translated into a class X1 · · · Xn C that implements the

interface X1 · · · Xn C and extends the class X2 · · · Xn C. The body of the

class X1 · · · Xn C is a copy of X1. We say that the interface X1 · · · Xn C

corresponds to the composition X1::· · · ::Xn::C. Similally, we say that

the class X1 · · · Xn C corresponds to the composition X1::· · · ::Xn::C.

• The interface X1 · · · Xn C extends all the interfaces that correspond to

each of X1::· · · ::Xn::C’s immediate super types.

• All the composition types that appear in class definitions and interface

definitions are replaced with corresponding interface names. Similarlly,

all the composition constructor invocations that appear in class defini-

tions are replaced with corresponding class names.

Figure 4.3 outlines how the compositions N::M::C and N::C, where N is a

mixin, are translated into Java hierarchies. In this case, the body of mixin N
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N::M::C

M
void g() { ... }

C
int f(M m) { ... }
boolean f(M::C h) { ... }

_M
void g();

_C
int f(_M m);
boolean f(_M_C h);

_M_C M_C
void g() { ... }

C
int f(_M m) { ... }
boolean f(_M_C h) { ... }

compile

interface hierarchy class hierarchy

N_M_C_N_M_C

_N_C

_N

N_C

class hierarchy

NN C
int f(M m) { ... }
boolean f(M::C h) { ... }

N::C

Figure 4.3: Translation into Java classes (a complex case)

is copied into the body of N M C and N C. These classes implement the corre-

sponding interface, respectively.

4.2 Evaluating the compilation

We sketch that this translation preserves behavior of the McJava program.

First of all, all the composition types are replaced with corresponding interface

types, and subtype relations are preserved among them. Each class in the

class hierarchy also corresponds to the McJava composition type, and subtype

ralations are also preserved, because each class implements the corresponding

interface. The class hierarchy is used only for the instance creation. The

order of method invocation on these instances is also preserved, because the

translated class hierarchy preserves the inheritance relation among constituents
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of the composition.

One may wonder why there is no subtype relation between C and C. To

make the compiler backward compatible to the existing Java libraries, we

should not make any change on the structure of class hierarchies. Therefore,

we should not add another implements relation between C and C.

But a question still remains. Suppose we have the following McJava code

fragment:

M::C m = new M::C();

C c = m;

This code is translated to the following Java code

_M_C m = new M_C();

C c = m;

that results in a compile error because C and M C are not comparable. However,

we can also avoid this error by injecting the type-cast as follows:

_M_C m = new M_C();

C c = (C)m;

So far, our McJava compiler is backward compatible to standard Java com-

pilers3. That is, every Java program that can be compiled with a standard Java

compiler may also be compiled with the McJava compiler. Actually, following

the above algorithm, the McJava compiler does nothing when it consumes a

standard class written in pure Java. This means that our compiler does not

degrade run-time performance of Java. Furthermore, in our approach, a mixin

composition is translated into a class hierarchy whose depth is exactly the

same as the depth of the correspinding mixin composition. This implies that

the run-time performance of mixin-based composition is also reasonable; e.g.,

the cost of a method dispatch on an instance of a composition is the same as

the cost of method dispatch on the corresponding class inheritance chain.

At the moment, we have developed a preliminary version of McJava com-

piler that has some restrictions including that it still does not have the ca-

pability of accessing Java standard libraries. However, since our compilation

3Except for that McJava reserves keywords mixin and requires
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scheme leaves all the program pieces that do not contain any McJava specific

statements unchanged, we may easily add an ability to use the existing Java li-

braries to McJava compiler. The current prototype version of McJava compiler

is written in the Objective Caml language. We are now planning to develop

more practical compiler by using a convenient tool such as Polyglot [45], a

framework for developing a compiler of an extension of Java.

4.3 A Sketch for Separate Compilation

Current McJava compilation procedure does not support separate compilation.

This does not necessarily mean that it is impractical. Actually there are some

practical systems that do not support separate compilation such as templates

on some C++ compilers and AspectJ compiler [38].

It is clear, however, that support for separate compilation is very helpful

to distribute binary form of mixins. Fortunately, McJava type system allows

separate type checking of each mixin; therefore, we may pursue a way for

separate compilation. For this purpose, we think that introducing a linker

that composes the binary mixins before load time will solve the problem4.

Instead of analyzing the whole program, this compiler will compile a mixin to

a class whose superclass has a dummy implementation of the required interface.

The linker links classes and mixins to create binary form of compositions by

manipulating class files generated by the compiler.

4.4 Summary

In this chapter, we have discussed how McJava programs are efficiently trans-

lated into Java programs. This gives an assurance that McJava programs are

efficiently runnable on the standard Java virtual machine. Moreover, we may

lead a way for developing a more practical compiler that enable us to use the

existing Java libraries in McJava programs, because our compilation strategy

does not change any pure Java code. Owing to its ability to type-check mixins

separately, we may also find a way to separate compilation.

4The idea is taken from Jiazzi [42].



Chapter 5

An Advanced Mechanism of

Method Dispatch

Sometimes, a new programming language construct, which solves some prob-

lems, also produces new problems. One problem that mixin-based composi-

tion raises is known as accidental overriding [2]. Unlike inheritances in many

object-oriented languages where a subclass explicitly declares its superclass, in

mixin-based composition, a mixin does not know which superclass the mixin

will be composed with. Therefore, when a user of a mixin (who will be differ-

ent from the implementor of that mixin) tries to compose it with some other

classes, it is possible that a method declared in the mixin accidentally overrides

a method declared in the superclass.

This chapter presents a new mechanism of method dispatch that solves the

accidental overriding problem and how to implement it in McJava compiler.

5.1 The Problem of Accidental Overriding

In general, there are two kinds of overriding: intentional overriding and acci-

dental overriding. In the case of intentional overriding, we know that a super-

class has a method that will be overridden. In this case, we explicitly declare

methods imported from the superclass (e.g. as explained in the previous chap-

ters, we can use requires clause for this purpose in McJava), then override

them in a mixin. In the case of accidental overriding, on the other hand, we do

not know that the superclass has a method whose name and formal parameter

53
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class Person {

String _name;

String name() { return _name; }

}

mixin Employee requires { String name(); } {

String id, title;

String name() { return title+super.name(); }

String getID() { return id; }

}

mixin Student {

String id;

String getID() { return id; }

}

class Main {

public static void main(String[] args) {

Employee e =

new Student::Employee::Person();

String id = e.getID();

...

}

}

Figure 5.1: Accidental Overriding in McJava

types are the same as those of a method declared in the mixin. This overriding

is harmful because it accidentally changes the behavior [40] of the superclass.

In Figure 5.1, we illustrate the problem of accidental overriding by us-

ing McJava programming language. This figure declares a class Person that

represents core attributes of a person (in this example, it only contains an

attribute corresponding to the name of person). The figure also declares two

mixins, Employee and Student. The class Person can be composed with mixin

Employee, because it implements the interface that the mixin Employee re-

quires (i.e. String name() method). The imported methods declared in the

requires clause is referred in the body of mixin; i.e., super.name() is called
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inside Employee.name(). In other words, Employee intentionally overrides the

method String name(). In Figure 5.1, this composition, Employee::Person

is further composed with another mixin Student.

The mixin Employee also declares method String getID() that returns

the identification number at the company, and the mixin Student declares the

same method that returns the identification number at the school. In class

Main, we compose Student with Employee and Person, and create its instance

(which means an employee who is also a student). This instance is referred by

variable e whose static type is Employee. When getID() method is invoked

on e, we expect Employee.getID() to be executed; however, if the normal

method lookup rule of Java stipulating the most specific method to be always

selected is applied, Student.getID() is called. Because it behaves differently

from Employee.getID(), the result of method call e.getID() does not satisfy

the expectation of the user of e. Therefore, in this case the alternative method

lookup scheme is required.

One way to avoid accidental overriding is to have a compiler reject a pro-

gram that contains a composition with accidental overriding. Of course, we

can statically analyze whether there is accidental overriding or not. However,

this approach limits the reusability of mixins. To promote reusability of mixins,

mixins should be composed with classes even when there exists accidental over-

riding. Another way to avoid accidental overriding is to select which method

to be invoked by using the context information that encloses the method invo-

cation. Furthermore, we should also consider that, in Java-like languages, we

may combine the overriding method with the overridden (original) method by

calling the latter method with super. If we allow the selective method invoca-

tion as mentioned above, there may exist multiple candidates for combination

of methods1. We need a new mechanism of method lookup.

By preserving the static type information of variable e, we can invoke

Employee.getID() instead of Student.getID(). This mechanism is known

as hygienic mixins [29, 2, 42]. If we adopt this scheme, there can be more than

one method that has the same name and the same formal parameter types on

that composition. We may select a method to be invoked by using static type

information. Furthermore, if we intentionally override the getID() method in

1The source of the term “method combination” is CLOS [37].
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a possible subclass of that composition, then there will exist multiple combi-

nations of methods: methods combined by calling the original method with

super. To show when this situation occurs, we use the following example.

Suppose we have a mixin Id that imports a method String getID() from

a superclass, and intentionally override it.

mixin Id requires { String getID(); }{

String getID() { ...; return super.getID(); }

...

}

This mixin implements a concern of identification, performing identification-

related tasks. The getID() method declared in that mixin calls super.getID()

and returns its result. This method is regarded as an abstract method that

can be called by other methods declared in that mixin. This is a variety of

template design pattern [30].

We can compose Id with Employee and Student, adding identification-

specific operations to those mixins. Furthermore, as shown previously, an

employee may also become a student. We have the following composition:

Id::Student::Employee p =

new Id::Student::Employee::Person();

processIdOfEmployee(p);

processIdOfStudent(p);

In this case, both of Employee and Student provides String getID() method.

Then, a question arises; when Id.getID() executes the expression super.getID(),

which method should be called, Employee.getID() or Student.getID()?

The answer to the question depends on the static typing of the instance

referred by the variable p. Suppose the processIdOfEmployee method is de-

clared as follows:

void processIdOfEmployee(Id::Employee e) {

String id = e.getID();

...

}

McJava allows a composition Id::Student::Employee to be a subtype of

Id::Employee, which means, in McJava, subtype relations are not restricted
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to the immediate inheritance relations. In the above case, local variable e

has type Id::Employee; therefore, the executed code of super.getID() in

Id.getID() should be Employee.getID().

On the other hand, the definition of processIdOfStudent is:

void processIdOfStudent(Id::Student e) {

String id = s.getID();

...

}

In this case, local variable s has static type Id::Student; therefore, the ex-

ecuted code of super.getID() in Id.getID() should be Student.getID().

Therefore, in this case we should have multiple method combinations: [Id.getID(),

Employee.getID()] and [Id.getID(), Student.getID()].

5.2 Selective Method Combination

To tackle the problem, we propose a new approach to method lookup that

solves the accidental overriding problem. Our approach allows selective method

combination; that is, if we have multiple candidates for method call to super,

we can select which method to be called. This selection is also achieved by

using static type information of the receiver. Our approach is actually an

extension of hygienic mixins. However, as we have seen, since McJava provides

flexible mixin-based subtyping, adopting hygienic mixins to McJava is actually

a non-trivial issue. In McJava, an immediate superclass of a mixin in the run-

time inheritance chain may be different from the statically known superclass

thus requiring more sophisticated treatment in invoking a superclass’s method.

To explain our approach, we assume that mixins A, B, C, D and a class E

have a method void m(). Mixins B and D also require a method void m() and

call super.m() inside the definition of B.m() and D.m(), which means they in-

tentionally override a method void m(). Finally, an instance of a composition

A::B::C::D::E is created and stored into a local variable o whose static type

is B::D (Figure 5.2):

B::D o = new A::B::C::D::E();

o.m();
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m()

m()

m()
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requires m()
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Figure 5.2: New method lookup in McJava

In this case, A.m() and C.m() accidentally override the superclass method,

and B.m() and D.m() intentionally override the superclass method. Because

the method o.m() is invoked with the static scope B::D, the method that

B.m() overrides should be D.m(). Since C.m() accidentally overrides D.m(),

the executed method should be B.m() and D.m() (followed by E.m()).

We sketch the method lookup algorithm as follows:

1. In our approach, the method lookup (e.g. o.m()) starts with the bottom

of static inheritance chain (that is B in Figure 5.2. We mean a static

inheritance chain by a statically known inheritance relationship to dis-

tinguish it with the run-time inheritance chain. The static inheritance

chain is denoted with dashed lines in Figure 5.2), then searches down the

run-time inheritance chain.

2. In each mixin definition in the run-time inheritance chain, the method

lookup searches a method with the same name and the same formal
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parameter types as the invoked method.

In Figure 5.2, it finds that A has a definition of void m().

3. If the found method intentionally overrides the superclass’s method i.e.

a method with the same name and the same formal parameter types is

declared in the requires clause, the search goes down further to follow

the longest possible chain of intentional overriding. If the method is

not declared in the requires clause, this is an accidental overriding so

the down search stops and the last matched method encountered before

reaching the mixin that hides the method is executed.

In Figure 5.2, A does not require a method void m(); therefore, the

resolved method is B.m().

4. The method lookup then searches the superclass’s method called on

super. This search goes up on the run-time inheritance chain until it

reaches the starting point (B in Figure 5.2). After reaching the starting

point, the search then goes up the next mixin of static inheritance chain,

and searches down the run-time inheritance chain again.

In Figure 5.2, super.m() is called during the execution of B.m(). The

method lookup then searches down the run-time inheritance chain from

mixin D.

5. The method lookup iterates the searching process 1 through 4 until no

combined methods are left.

In Figure 5.2, the method lookup finds that C has a definition of void

m(); however, C does not import a method void m(). Therefore, the

method call super.m() in B.m() results in the execution of D.m(). Dur-

ing the execution of D.m(), super.m() is called, which results in the

execution of E.m().

So far, the executed methods in Figure 5.2 are B.m(), D.m() and E.m(). In

other words, the method combination from A.m(), B.m(), C.m(), D.m() and

E.m() with a static scope B::D is [B.m(), D.m(), E.m()].

Note that if the pure-Java semantics of method lookup is applied, the exe-

cuted method is A.m().
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5.3 Implementation Issues

We have implemented the mechanism explained above into the McJava com-

piler that compiles McJava source programs into Java source programs. Java

virtual machine does not preserve static type information of run-time objects.

To preserve static type information in translated Java programs, the compiler

changes the name of methods declared in mixins and corresponding method

invocations.

McJava compilation strategy is explained in Chapter 4. In this chapter, we

briefly sketch how the renaming of methods works in the compilation. Figure

5.3 and 5.4 shows the translated Java code from the definitions in Figure 5.1

and Id in section 5.1:

1. All the method names newly introduced in a mixin are prefixed by the

name of that mixin and a character $. For example, the getID() method

in the mixin Employee becomes Employee$getID(). This renaming

avoids accidental overriding.

2. The treatment of methods that intentionally override superclass’s meth-

ods is more sophisticated. Firstly, not as in the case of accidental overrid-

ing, the compiler does not change the name of the method, but changes

the method name of super call to the name of the overridden method in

the translated class hierarchy. For example, the super call inside getID()

method in mixin Id becomes Student$getID() in the translated class

(Id Person). If there exist multiple method combinations, the compiler

also inserts new methods whose names are the same as those of over-

ridden methods, copying body of the overriding method. For example,

the method declaration getID() in Id is also copied into the method

declarations Student$getID() and Employee$getID() in the translated

class. Note that the name of the method in method invocation on super

is also changed appropriately.

The method name invoked externally is also changed. For example, the

declaration of processIdOfEmployee in section 5.1 becomes the following dec-
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class Person {

String _name;

String name() { return _name; }

}

interface _Employee {

String name();

String Employee$getID();

}

interface _Employee_Person extends _Employee, _Person {}

class Employee_Person extends Person

implements _Employee_Person {

String id, title;

String name() { return title+super.name(); }

String Employee$getID() { return id; }

}

interface _Student {

String Student$getID();

}

interface _Student_Employee_Person

extends _Student_Employee,_Student_Person,

_Employee_Person

{ }

...

class Student_Employee_Person extends Employee_Person

implements _Student_Employee_Person {

String id;

String Student$getID() { return id; }

}

Figure 5.3: Compiled code of Figure 5.1 and Id (1)
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interface Id {

String getID(); ...;

}

interface _Id_Student_Employee_Person

extends _Id_Student_Employee,

_Id_Student_Person,

_Id_Employee_Person,

_Student_Employee_Person

{ }

...

class Id_Student_Employee_Person

extends Student_Employee_Person

implements _Id_Student_Employee_Person {

String Student$getID() {

...; return super.Student$getID();

}

String Employee$getID() {

...; return super.Employee$getID();

}

String getID() {

...; return super.Student$getID();

}

...

}

Figure 5.4: Compiled code of Figure 5.1 and Id (2)

laration:

void processIdOfEmployee(_Id_Employee e) {

String id = e.Employee$getID();

...

}
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5.4 Summary

In this chapter, we have shown how the mechanism of selective method com-

bination addresses the problem of accidental overriding. Our approach guar-

antees that the most specific method from the view point of the statically

known type of the receiver is guaranteed to be executed in the case that mul-

tiple methods coexist in the same object. This mechanism is implemented in

the McJava compiler as source-to-source translation, by using the technique of

method renaming.

Our approach may look specific only to be applied to McJava because it

depends on McJava subtyping rules. However, some languages such as gbeta

[26] allow similar mechanism as McJava.2 We believe that the proposal of

this paper can be applicable to such languages. Furthermore, as shown in the

previous sections, subtyping in McJava is a generalization of inheritance-based

subtyping. When this subtyping scheme is introduced into other languages,

the problem treated in this chapter always arises and the proposed solution

may be useful.

2We note the similarity and difference between McJava and gbeta in Chapter 7.





Chapter 6

Mixins and Other Language

Features

So far, we have explored how to add mixin-based composition into the Java

programming language. Besides our work, there are many researches on adding

new constructs to the conventional Java. These researches are independent to

mixins; how mixins interact with these constructs still remains as an open

issue.

This chapter investigates how mixins are related with generics and ThisType.

The mechanism of generics plays an important role on definition of polymor-

phic “collection classes” such as Set and List, which are monomorphic in the

conventional Java. For example, while the monomorphic lists only guarantee

that their elements are at most Objects (so when we use values stored in the

list, we have to downcast them in order to do anything useful with them), we

may create an instance of a list whose elements are guaranteed to be integer

values:

List<Integer> li = new List<Integer>();

This feature is now included in Java; therefore, it is interesting to study rela-

tionship between generics and mixins.

There is also an interesting study on adding ThisType (or ThisClass) to

Java [14]. ThisType is a name of type that refers to a type of this. This

construct enhances extensibility of modules. For example, the conventional

Java library includes an interface Cloneable that is implemented by classes

65
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class List<T <: Object> {

T head;

List<T> tail;

public List(T h, List<T> t) {

head = h; tail = t;

}

...

}

Figure 6.1: An example of generic class

which may be cloned. In the definition of the clone() method (declared in

Object), however, we cannot predict which class implements this interface;

therefore, a return type of clone() is declared as Object, that is a supertype

of all the reference types. Since Object gives no useful information of the

type of the object that clone() returns, programmers must downcast it to

some expected type in order to do anything useful with it. ThisType construct

compensates this limitation; we can declare clone() as follows:

ThisType clone();

Even though this feature is not included in the official version of Java, it pro-

vides much extensibility and it is interesting to study how this feature relates

to mixins.

This chapter presents a design of a language that extends McJava with

generics and ThisType. This chapter also demonstrates how expressive this

language is by showing an example. With this language, we can actually con-

struct a more flexible version of mixin layers [54].

6.1 Generics

Generics is a mechanism of applying parametric polymorphism in type systems

of functional languages such as ML to object-oriented languages. It abstracts

type information that appears in class declarations, method declarations, and

interface declarations, by using type parameters. Figure 6.1 shows an example



6.1 Generics 67

that declares a generic class List. In this figure, type parameters are declared

between angle brackets (<>) following the class name List. We can use the

class name List as a type with the form of List<Integer> or List<String>

that means a list whose elements are guaranteed to be integer values or a list

whose elements are guaranteed to be string values, respectively:

List<String> sl = new List<String>("foo",

new List<String>("bar", null));

String s = sl.head;

List<Integer> il = new List<Integer>(new Integer(10),

new List<Integer>(new Integer(20),

null));

Integer i = il.head;

The right operand of <: in Figure 6.1 is an upper bound of the type param-

eter T (in this case, that is Object), which means a value of T is at most an

Object. While C++ templates mechanism that does not support such upper

bounds is sometimes called unbounded polymorphism, the generics in Java is

called bounded polymorphism. Moreover, it actually allows type parameters to

appear in upper bounds (F-bounded polymorphism [16]). It is known that this

feature is useful for writing extensible programs (one example using it is found

in [63]).

Like generic classes, we may also consider generic mixins, which are mixins

whose type information in its declaration is abstracted by using type parame-

ters. Furthermore, we may also use type parameters inside requires clause:

mixin Color<T <: Graphics> requires {

void paint(T g);

} {

private int color;

void paint(T g) {

g.setColor(color);

super.paint(g);

}

...

}
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class App<C <: Color, F <: Font> {

List<C> colorList;

List<F> fontList;

List<C::F> colorFontList;

...

}

Figure 6.2: Composition of type parameters

As in the case of generic classes, we may also use the mixin name as a type

with the form of Color<Graphics>. We may use it as if we have defined a mixin

Color whose paint method’s type parameter is Graphics; we can compose it

with an other class that implements the method void paint(Graphics g).

Conceptually, in class-based systems, type parameters may appear every

place where types can be used1. Therefore, one may also wonder whether

type parameters may be used as operands for mixin composition operator ::.

For example, Figure 6.2 declares a generic class App that contains an instance

variable of list whose elements are guaranteed to be compositions of C, which

is at most Color, and F, which is at most Font. By instantiating App as

App<Color::RGB, Font>, we may get a list of elements featured by “color

with RGB” and “font.” This declaration of App, however, can be dangerous,

because we may also instantiate App with App<Color::Label, Font>, which

results in a list of elements of Color::Label::Font, but this composition is

actually ill-formed.

1In GJ[11] (so as in Java5), using type parameters in constructor invocation and type
casting is restricted.
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One way to avoid this ill-formed composition is to forbid a composition

containing type parameters. However, this approach is too restrictive, because

it rejects all compositions containing type parameters, even when type param-

eters are assigned safe types. Actually, we may take more flexible approach.

That is, we may allow the ill-formed composition, unless we create a value of

it. For example, in the following code fragment, the compiler can report an

error when it finds an instance creation of Color::Label::Font:

new App(Color::Label, Font).

colorFontList.insert(new Color::Label::Font());

// compile error

In other words, an ill-formed composition can be considered as a bottom type,

a subtype of all the types that has no inhabitants.2

To guarantee that there are no values of ill-formed composition, we still

impose the following restrictions on the type system; constructor invocations

must not contain type parameters, and type casts must not contain type pa-

rameters. These restrictions are not so arbitrary; they are actually imposed

on Java5, although in Java5 these restrictions stem from the requirements for

backward compatibility.

6.2 ThisType

ThisType [14] stands for the type of this. If a class C declares a method m,

then when m is invoked on an object whose run-time type is C, any occurrences

of ThisType in the m’s type signature may be safely assumed to be C. When

m is inherited in a subclass of C, or C is composed with some mixins, then

the occurrences of ThisType in m are assumed to have all the features of this

subclass or composition, respectively. For example, suppose that M is a mixin,

mc is an expression of type M::C, and m is a method declared in C with static

type

m: ThisType → void

Then, the type of m is considered to be

2Except for null, of course.
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class C {

void m(ThisType c) { ... }

}

mixin M requires { void m(ThisType c); } {

void n() { ... };

void m(ThisType c) { ...; c.n(); ...; }

}

class Main {

static void boom(C c1, C c2) { c1.m(c2); }

public static void main(String[] args) {

boom(new M::C(), new C()); // error!

}

}

Figure 6.3: An example of error using ThisType

m: M::C → void

when the method invocation mc.m(o) is typechecked.

In order to ensure that the above method invocation is safe, we need to

be able to determine the precise type that the receiver will have at run-time.

Figure 6.3 shows why this property is needed. If the typecheckor does not

report an error when it analyzes the line labeled “error!,” then the evaluation

of c1.m(c2) in the body of boom would send the message n to an object of type

C, which has no such method.

To avoid this problem, we may give up the subtyping between ThisType of

before the extension and that of after the extension. One way to do this is to

introduce exact types, which guarantees that the type of run-time objects do

not change while the computation [14]. Another instance of this problem and

how to rule it out is discussed in section 6.4.

Note that, as in Figure 6.3, we may also use ThisType in the requires

clause of mixin declarations, which means that the mixin M requires a method

m whose formal parameter type is literally declared as ThisType.
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Figure 6.4: Layered Design

6.3 An Approach to Layered Design

In this section, we show an example program written in McJava extension

with generics and ThisType. With the extension, we can write a flexible and

extensible program for layered design [18]. Before we proceed, we introduce

an existing programming method named mixin layers, because our approach

presented in this section is an enhancement of this method.

6.3.1 Mixin Layers

Layered design that decomposes software as layers of functions is considered

suitable for constructing a “family of programs” [48]. For example, Figure 6.4

shows an image of layered design for a graph traversal application.3 In this ex-

ample, there are two objects that participate in the application. These objects

are instances of classes Graph and Vertex respectively; in Figure 6.4, each of

these classes is depicted by a rectangle. There are also concerns that cross-cut

these classes, such as a graph representation, a graph traversal algorithm, some

kinds of processing on the graph (such as numbering of each vertex), and so

on. These concerns are depicted as rounded rectangles in Figure 6.4.

By using layered design, we may easily extend the program with new fea-

tures such as cycle checking, or we may easily replace a layer with another

layer (e.g., we may replace DepthFirst with BreadthFirst). This is why the

layered design can effectively construct family of programs.

3This figure has been used in [32], [66], and [54] to illustrate each work.
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class UndirectedGraph {

class Graph { ... };

class Vertex { ... };

};

template <NextLayer>

class DepthFirst : public NextLayer {

class Graph : public NextLayer::Graph { ... };

class Vertex : public NextLayer::Vertex { ... };

};

template <NextLayer>

class Numbering : public NextLayer {

class Vertex : public NextLayer::Vertex { ... };

/* functions for numbering vertecies */

};

Figure 6.5: Mixin layers implementation using C++

Mixin layers [54] is one promising programming method for implementing

layered design. Figure 6.5 shows an example of mixin layers that implements

Figure 6.4; it uses C++ templates. A class UndirectedGraph implements a

layer of “undirected graph” (Undirected in Figure 6.4); it declares Graph and

Vertex as inner classes. A template DepthFirst implements a layer of graph

traversal algorithm (in this case the depth first algorithm is used). The super-

class of DepthFirst is a type parameter of templates, which means DepthFirst

is a mixin.4 DepthFirst also declares two inner classes Graph and Vertex

whose superclasses are inner class members of NextLayer (a type parameter

of DepthFirst); i.e., these inner classes are also mixins.

4The difference between mixins in McJava and mixins in C++ templates is discussed in
Chapter 7.
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One of the advantages of mixin layers is the modularity of each layer;

e.g., we may compose UndirectedGraph with a traversal layer other than

DepthFirst such as BreadthFirst, or we may compose DepthFirst with a

graph layer other than UndirectedGraph such as DirectedGraph. Another

advantage of mixin layers is its convenience for composing large scale layers;

we may simply construct an application by composing each layer:

typedef Numbering<DepthFirst<UndirectedGraph>> App;

App::Graph *graph = new App::Graph();

Since we adopt a convention to use the same name for each inner class that

appears in each layer, when the above composition is placed, these inner classes

are also composed.

Cardone et al. argued that layered design and implementation is more suit-

able for program reuse and evolution than existing object-oriented frameworks

[18]. Furthermore, by this modularity of layers and simplicity of composition,

mixin layers are considered as an effective way for constructing software prod-

uct lines [21].

6.3.2 Our Approach to Generic Mixin Layers

Despite its modularity, the method of mixin layers has some limitations. First,

in mixin layers, it is rather difficult to implement a series of layers, because

a mixin layer consists of only one module; i.e., in mixin layers, the elements

in a layer (that are implemented as inner classes) cannot be modularized. It

would be more convenient if we have modules that implement the elements of a

layer, and we can construct a layer by using them. For example, we may have

two kinds of implementation for graphs: adjacency-matrix representation that

is suitable for dense graph, and adjacency-list representation that is suitable

for sparse graph. Furthermore, we may also have multiple representations for

vertex, such as colored vertex and uncolored vertex. It would be convenient if

we can select a graph implementation from the variety of graph representations,

and if we can also select a kind of vertex in the same way, for construction of

a layer.

The second limitation of mixin layers is C++ specific; that is, it is impos-

sible to typecheck each layer separately.



74 Chapter 6 Mixins and Other Language Features
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Figure 6.6: A generic graph layer

By using the constructs introduced in section 6.1 and 6.2, we may resolve the

limitations imposed by mixin layers. Our approach actually provides additional

modularity that allows implementation of generic mixin layers whose “inner

classes” are parametrized.

Outline of our approach. Our approach makes it possible to implement

a generic layer whose “inner classes” are parametrized, which means we may

“inject” a separately developed inner classes to the parameters of the generic

layer (Figure 6.6). This parameterization is achieved by using generic classes.

A non-trivial issue on this separation is as follows; each inner class must still

be able to refer to each other, even when they are separately developed. This

means that the generic layer should have information about each inner class,

and each inner class should also have information about the layer to access the

information that the layer has. We may use F-bounded polymorphism for this

purpose.

After constructing each layer by filling in the “holes” with the separately

developed inner classes, we may simply combine them by mixin-based com-

position, as we saw in the mixin layers method. Furthermore, our approach

allows separate typechecking of each layer. This checking is achieved by using

requires clause of McJava. In checking, we should also take into account that

some types in each layer will be extended after composition. To predict this

extension, we may use the ThisType construct.
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class GraphLayer<&G <: Graph<GraphLayer<G,V>>,

&V <: Vertex<GraphLayer<G,V>>> {

...

}

Figure 6.7: A generic graph layer

In the rest of this section, we show our approach in detail.

Parameterizing “inner classes.” Figure 6.7 shows a generic graph layer.

The generic class GraphLayer declares type parameters G and V whose upper

bounds are declared as generic interfaces Graph and Vertex, respectively.

These type parameters provide places that the separately developed “inner

classes” will be stored; however, they are not like inner classes in that it is

impossible to access these type parameters from the outside of GraphLayer.

For this purpose, we introduce a new convenient mechanism of allowing this

access. If a type parameter is annotated with &, this type parameter can be

referred as a field of the class:

GraphLayer<MyGraph,MyVertex>.G graph = ...;

This mechanism is like virtual types [35, 61, 51], although virtual types provide

mechanism of declaring types as instance variables.

Note that we the put type parameters G and V as arguments for generic

interfaces Graph and Vertex, which restricts on the very type parameters that

are passed to them (F-bounded polymorphism).

Implementing the “inner classes.” Figure 6.8 shows an implementation

of a graph that will be bound to the type parameter G in Figure 6.7. The class

DenseGraph is an adjacency-matrix representation of a graph that implements

the interface Graph. DenseGraph is also declared as a generic class that declares

a type parameter C. This parameter is a place where the layer (that DenseGraph

will be stored in) will be stored. This parameterization is necessary, because

inside DenseGraph we would like to access other members declared in the layer,

such as C.V. Note that we use the ThisType construct to prepare for the future

extension of this class.



76 Chapter 6 Mixins and Other Language Features

interface Graph<&C <: GraphLayer<C.G,C.V>> {

public ThisType.C.V getVertex(String name);

public Vector<ThisType.C.V> getChildren(ThisType.C.V v);

public void addVertex(ThisType.C.V v);

public void addEdge(ThisType.C.V v1, ThisType.C.V v2);

}

class DenseGraph<&C <: GraphLayer<C.G,C.V>>

implements Graph<C> {

private boolean[][] graphArray = new boolean[..][..];

private ThisType.C.V[] vertexMap = new ThisType.C.V[..];

...

public ThisType.C.V getVertex(String name) { ... }

public Vector<ThisType.C.V> getChildren(ThisType.C.V v) {

... }

public void addVertex(ThisType.C.V v) { ... }

public void addEdge(ThisType.C.V v1, ThisType.C.V v2) {

... }

}

Figure 6.8: A dense graph module

We may also implement a vertex module (e.g. ColoredVertex) in the same

way. Once these definitions are made, we instantiate the generic layer (we also

introduce a typedef construct to name the fixed point for the type parameters):

typedef GraphLayerF =

GraphLayer<DenseGraph<GraphLayerF>,

ColoredVertex<GraphLayerF>>;

We put the fixed point type, GraphLayerF, as an argument for DenseGraph

and ColoredVertex, which are also passed to GraphLayer.

Implementing a search layer. GraphLayerF can be composed with other

layers. SearchLayer, shown in Figure 6.9, is one of such layers. Its definition
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mixin SearchLayer<&G <: SearchG<SearchLayer<G,V>>

&V <: SearchV<SearchLayer<G,V>>> {

...

}

Figure 6.9: A generic traversal layer

interface SearchG<&C <: SearchLayer<C.G,C.V>> {

public void visit(ThisType.C.V v);

}

mixin DFSGraph<&C <: SearchLayer<C.G,C.V>> requires {

Vector<ThisType.C.V> getChildren(ThisType.C.V v);

} implements SearchG<C> {

public void visit(ThisType.C.V v) { ... }

}

Figure 6.10: A depth first visitor module

is similar to that of the graph layer in Figure 6.7, except that SearchLayer is

declared as a mixin.

Figure 6.10 shows an implementation of depth first search module (DFSGraph)

that will be bound to the type parameter G in SearchLayer. DFSGraph is also

declared as a mixin. To enable separate typechecking, it declares an interface

that DFSGraph requires. In its requires clause, it declares the getChildren

method whose a formal parameter type is ThisType.C.V and whose return

type is Vector<ThisType.C.V>. Since ThisType refers to the type of this ob-

tained after composition, we may safely compose DFSGraph with DenseGraph

(see below).

As in the case of GraphLayerF, we instantiate the generic search layer:

typedef SearchLayerF =

SearchLayer<DFSGraph<SearchLayerF>,

FlagVertex<SearchLayerF>>;
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Composing layers. So far, we have developed mixin layers that implement

the graph layer and the search layer. Finally, we compose these layers:

SearchLayerF::GraphLayerF.G graph =

new SearchLayerF::GraphLayerF.G();

...

SearchLayerF::GraphLayerF.V vertex = graph.getVertex("..");

graph.visit(vertex);

In the composition SearchLayerF::GraphLayerF, the same names of “in-

ner classes” appear in each layer. These inner classes are eventually composed

when the layers are composed.

6.4 Discussion

Does the property of type soundness still holds when we extend McJava with

generics and ThisType? Unfortunately, the answer is no. We use the following

code fragment to show how this property is broken:

SearchLayerF::GraphLayerF.V v =

new SearchLayerF::GraphLayerF.V();

GraphLayerF.V vx = v;

vx.graph = new Foo::GraphLayerF.G();

v.graph.visit(..); // run-time error!!

An instance v has a type SearchLayerF::GraphLayerF.V, and it is as-

signed to a variable vx. Assuming that an & annotated type variable accessed

via a composition is a subtype of an & annotated type variable accessed via a

constituent of that composition (covariant subtyping), this assignment is legal.

Then, we assign a new value to the instance variable graph of vx (Assume

that graph is declared with a type ThisType.C.G on ColoredVertex. As the

statically known type of vx.graph is GraphLayer.G, and with the covariant

subtyping explained above, this assignment is also legal. However, the actual

type of vx.graph is SearchLayerF::GraphLayerF.G; therefore, this assign-

ment actually results in a run-time error!
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The cause of this error is a subtype relation between GraphLayerF.V and

SearchLayerF::GraphLayerF.V. Intuitively, this subtyping is derived from the

subtype relation between the actual types stored in the type variables (that

are DenseGraph and DFSGraph::DenseGraph). However, when we access them

from the outside of layers, there seems to be no obvious relationship between

V’s at different levels of composition; in other words, there may exist no situa-

tion when the assignment GraphLayerF.V vx = v in the above code fragment

becomes necessary. Therefore, we may omit this covariant subtyping, which

makes the above code fragment not well-typed:

SearchLayerF::GraphLayerF.V v =

new SearchLayerF::GraphLayerF.V();

GraphLayerF.V vx = v; // compile error

vx.graph = new Foo::GraphLayerF.G();

v.graph.visit(..);

Another aspect of our approach that should be discussed here is its com-

plexity. In fact, our approach sacrifices readability of programs in favor of

reusability and modularity. The reason why our approach produces complex

programs is that, in our approach, the “inner classes” must be parametrized

over the layer that is also parametrized. In the original mixin layers, this pa-

rameterization is not necessary, because inner classes are contained inside the

layer so that they can refer to each other without going through type parame-

ters.

We may enhance understanding of programs written by our method by ac-

cumulating experiences of using it. Incorporating with other language features

will also reduce this complexity (e.g. [25, 44, 67]).

6.5 Summary

In this chapter, we have discussed relationship between mixins and other lan-

guage constructs such as the mechanism of generics and ThisType. We have

shown a complicated issue on mixin-based composition including type param-

eters, and a natural extension of ThisType to mixin-based composition. We

have also shown that the language proposed in this chapter (McJava extension
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with generics and ThisType, plus other syntax sugars such as & annotated type

parameters and typedef) has a very strong expressive power, even though the

resulting code becomes somewhat tricky.



Chapter 7

Related Work

7.1 Mixin-Based Systems

7.1.1 Jam: Another Approach to Java with Mixins

Jam [4] is an extension of Java with mixins like McJava. Unlike McJava, Jam

gives semantics of mixin compositions by translation to Java that is informally

expressed as the copy principle:

A class obtained composing a mixin M with a class P should have

the same behavior as a usual subclass of P whose body contains a

copy of all the elements defined in M.

This semantics looks natural, since the obtained composition is exactly the

same as a hand-written subclass of P whose body is the same as that of M. Like

McJava, Jam also provides the feature of mixin-types, which means a mixin

can be used as a type and a mixin composition is a subtype of both the mixin

and the parent class from which it has been composed.

In this scheme, the expression this used in a mixin M should have the

static type M. Unfortunately, with this copy principle, there are situations in

which the static type of expression this inside mixins cannot be determined

correctly. One example of such situations is shown in Figure 7.1. In Figure

7.1, class A has two overloaded methods f with argument types mixin M and

its composition H, respectively. Mixin M has a method g. Inside g, method f

81
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class A {

int f(M m) { ... }

boolean f(H h) { ... }

}

mixin M {

void g() {

int i = new A().f(this);

...

}

}

// Jam’s syntax for mixin compositions

class H = M extends C {}

Figure 7.1: An example of faulty Jam code

is invoked with argument this. Since this has type M, the type of the return

value of this method invocation is statically determined as int.

Now, let’s consider the semantics of composition H. By the copy principle,

the semantics of composition H is equivalent to the following class definition:

class H extends C {

void g() {

int i = new A().f(this) // error!

...

}

}

Inside that definition, the static type of this becomes H; therefore, the method

invocation new A().f(this) has static type boolean, resulting in an invalid

assignment to integer variable i.

To avoid this situation, Jam takes a drastic decision to forbid the use of

this as an argument in method and constructor invocations inside a mixin.

We believe that this design decision is not adequate, since recursive reference

through this is a primary characteristic of object-oriented programming. Most

object-oriented languages actually support a more general form of recursion,

known as open recursion, or late-binding of this [49]. In Java, for example,
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we can write an abstract class inside which the expression this is used as an

argument to method invocation, but the actual binding of this is an instance

of its subclass that implements all the abstract methods. Similarly, we should

be able to write an abstract subclass inside which the expression this is used as

an argument to method invocation, but the actual binding of this is deferred

and to an instance of a concrete class that implements all the abstract methods.

Using this as an argument for method invocations in mixin declarations was

useful when we implemented an integrated system, which was discussed in

section 2.6.

Unlike Jam, McJava does not adopt the copy principle semantics. In Mc-

Java, the static type of this in mixin M is always M, even when the mixin M

is composed with class C. At run-time, this in M is bound to an instance of

a composition; e.g., when the expression new M::C().g() is executed, this is

bound to an instance of M::C. Which f to be invoked is determined at a com-

pile time, that is int f(M m), and since M::C is a subtype of M, no run-time

error occurs at run-time.

Unlike Jam whose semantics is given by translation to Java thus eventually

runnable on the standard JVM, McJava’s semantics is given at a more abstract

level; therefore, we also have to consider how to compile McJava programs. We

have also developed a compilation method from McJava to Java.

7.1.2 Other Mixin-Related Systems

Another approach of developing a mixin is to parameterize a superclass of

generic classes using type parameters. We have seen an instance of this ap-

proach in Chapter 6 that uses templates of C++ [56]. Even though a generic

class in Java5 does not support parameterization of its superclass, some exten-

sions of Java with generics allow it [1, 2].

One of the limitations of McJava that is not shared with generic class

approach is its disability to express the mixin’s superclass type inside the mixin
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as shown below:

class Color<Widget extends WidgetI> extends Widget {

Widget f;

...

}

However, we may partially solve this problem by adopting a coding convention

to make the classes composed with the mixin explicitly implement the required

interface of that mixin.

Another possible design of McJava is to impose a superclass of the mixin

to explicitly implement the required interface. In other words, the superclass

must be a subtype of the required interface. If this approach is adopted to

McJava, the following code

mixin Color requires WidgetI {

WidgetI f;

...

}

would work for many purposes. There is a design tradeoff. The reason why we

take the approach of structural constraint, where a superclass of mixin must

be a structural subtype of required interface, is that it is more flexible for com-

positions. Mixins are often implemented after the implementation of possible

superclasses. Imposing these classes to be a nominal subtype of the required

interface is rather restrictive, because it would require re-implementation of

the original classes.

Another difference between generic classes and McJava is the flexibility

of subtyping. Generic classes cannot capture the full power of McJava type

system, where a mixin may be used as a type, and Color::Font is a subtype

of both Color and Font.

Besides the feature of structural requires interfaces, McJava is a nominally

typed class-based language, that means the name of a class (or mixin) deter-

mines its subtype relationship. On the other hand, in object-oriented languages

with structural subtyping, the subtype relation between classes is determined

by their structures. A core calculus of classes and mixins for structurally typed
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language was proposed by Bono et al.[7]. Instead, we take a nominal approach,

because most modern object-oriented languages are nominally typed.

To our knowledge, a core calculus for mixin types extending Java was orig-

inally developed by Flatt et al.[29]. The novel feature of this calculus, named

MixedJava, is its ability to support hygienic mixins (also founds in [2, 42]).

Hygienic mixins use the static type information when looking up a method,

avoiding the problem of method collision. This feature is achieved by changing

the protocol of method lookup: in MixedJava, each reference to an object is

bundled with its view of the object, the run-time context information. A view

is represented as a chain of mixins for the object’s instantiation type. It des-

ignates a specific point in the full mixin chain, the static type of that object,

for selecting methods during dynamic dispatch. Even though the proposal of

hygienic mixins is useful, there is no implementation of MixedJava. However,

there exist two implementations of hygienic mixins [2, 42], neither of which

conforms with the McJava type system; McJava defines very flexible subtyp-

ing relations. For example, the subtype relation X :: Y :: C <: X :: C is

missing in MixedJava. Our work of adapting the implementation strategies of

hygienic mixins to our McJava compiler has been discussed in Chapter 5.

Mixin modules [22], essentially motivated by the problem of interaction

with recursive constructs that cross module boundaries in module systems of

functional languages, mainly focus on facilitating reuse of large scale program-

ming constructs such as frameworks [23]. Our work, on the other hand, mainly

focuses on integrating mixin-types and its flexible subtyping with real program-

ming languages. The work [23] sacrifices mixin subtyping in favor of allowing

method renaming.

MixJuice [33] is also independently proposed by Ichisugi et al. to modularize

large scale compilation unit. MixJuice is designed as an extension of Java with

difference-based modules that are separately compilable units of encapsulation.

The design of mixins in MixJuice is different from our work. In MixJuice,

the providers of mixins control encapsulation. In the case of diamond inher-

itance, the users have the responsibility of composing them without breaking

encapsulation. In McJava, on the contrary, the users of mixins control encap-

sulation because these mixins are parametrized over their superclasses. Users

add superclasses to mixins and there are no case of diamond inheritance.
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Schärli et al. proposed traits [53], fine grained reusable components as build-

ing blocks for classes. Traits support method renaming that overcomes the

problem of method collision. When traits are composed, the members of those

traits are “flattened” into one class, which also solves the ordering problem of

mixins. Our work, in contrast with traits, has more focus on declaring a mixin

as a type, and studying their subtype relations. We also would like to note that

the ordering of mixins is useful particularly when we “extend” a parametrized

superclass with the same name of method as the superclass, and invoke it via

super.m , where m is a method name.

7.2 Method Combination in Object-Oriented

Languages

As mentioned earlier, our approach of selective method combination is an ex-

tension of hygienic mixins [2, 42]. As discussed above, the implementation

of hygienic mixins is based on MixedJava. As mentioned earlier, MixedJava

uses run-time context information to determine which method should be in-

voked when an accidental overriding exists. The subtyping rules of these work

do not allow an immediate superclass of a mixin in the run-time inheritance

chain to be different from the statically known superclass. Selective call of the

“original” method to super is not achieved in [2, 42, 29].

Ernst proposed the propagation mechanism of method combination in the

statically typed language gbeta [26], a generalization of the language BETA

[41]. gbeta also provides similar mechanism with our approach that allows two

methods with the same signature to coexist in the same object, and to select

which one of them to call based on the statically known type of the receiver.

However, BETA/gbeta does not provide Java-style method overriding; instead

it provides method argumentation by INNER statements. Therefore, the result

of selective method combination in gbeta is different from our approach. Since

gbeta does not allow intentional overriding that is allowed in McJava, prop-

agation mechanism in gbeta is simpler than selective method combination in

McJava. There is a design tradeoff between which approaches to take, INNER

or super; further discussion about this tradeoff is found in [9]. We also note

that recently Goldberg et al. propose a language that integrates super and
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INNER [31].

7.3 Other Related Issues

Aspect-oriented programming (AOP) [39] aims to modularize cross-cutting

concerns in modules called aspects. Some kinds of cross-cutting concerns are

also modularized using mixins. We have already shown an instance of this

modularization in section 2.6. In this sense, McJava weakly supports AOP

but some additional efforts are required to programmers. Especially, we need

to write a glue code composing mixins instead of using a weaver. However,

we may note that constructing “aspects” by using mixin-based composition

becomes easier if we adopt the layered design discussed in Chapter 6.

In Chapter 6, we have proposed a McJava extension for mixin layers. Car-

done et al. also proposed a Java extension for mixin layers named JL [17].

Unlike mixin layers, JL supports ThisType. Like mixin layers, in JL the mem-

bers in a layer are expressed as inner classes. Our approach, on the other hand,

enables separation of these inner elements from the layer.

Another idea explained in Chapter 6 is the introduction of & annotated

type parameters, which allows access to each type parameter from the outside

of generic class; in other words, if a type parameter is declared with & anno-

tation, it may also be treated as a field of this class. This mechanism is a

combination of the benefits of virtual types and generic classes. The similar

system is also proposed by Thorup et al. [62]. However, our approach is slightly

different from virtual types in that & annotated type parameters are treated

as fields declared in each concrete class obtained by assigning types to the type

parameters (note that it is different from class variables), while virtual types

are instance variables. Note that virtual types cannot be accessed through

types, like C.V that is required in the example program shown in Chapter 6.

Our approach discussed in Chapter 6 is a generalization of extensible mutu-

ally recursive types [15], in that in our approach each extension is also param-

eterized over the extended (original) module. A feature of extending mutually

recursive types “at once” is considered to be promising way to solve some

challenging issues of object-oriented programming such as expression problem

[12]. There are also much work to this direction of research (e.g., family poly-
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morphism [24], higher order hierarchies [25], and nested inheritance [44]). The

programming language Scala also provides such extensibility [46].

Mixins may be used as vehicles to directly implement roles in terms of

role modeling [59]. Epsilon [65, 60], a role-based executable model, was also

proposed for this purpose. While Epsilon has a feature of dynamic object

adaptation, we consider McJava and its core calculus provides a good basis for

incorporating static typing into Epsilon. When an Epsilon object dynamically

adapts to a role, replacing of methods may occur. This replacing allows more

flexible method combination than the traditional method overriding where the

name of overridden method is always the same as that of overriding method.

Even though McJava does not allow this replacing, we consider the mechanism

proposed in this dissertation such as selective method combination provides a

good basis for incorporating similar mechanism into Epsilon.
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Conclusion

8.1 Summary of the Dissertation

In this dissertation, we have studied a mechanism of mixin-based composi-

tion in the context of Java-like languages both on theoretical point of views

and implementation point of views. We have designed and implemented a

programming language McJava, an extension of Java with mixins. We have

also studied more advanced aspects of mixin-based composition such as selec-

tive method combination and interaction with other language constructs. The

main contributions are summarized as follows:

• We have designed McJava that extends Java with new syntactic forms

such as mixin declarations and mixin composition operators. This lan-

guage has an ability to use the name of a mixin as a type. The language

also supports more advanced features such as higher order mixins and

mixin-based subtyping. The example of integrated systems has illus-

trated the expressive power of McJava.

• We have developed Core McJava, a small calculus of McJava, and a proof

of the type soundness theorem of Core McJava. Core McJava includes key

constructs that characterize McJava type system, ensuring the soundness

of McJava type system. Core McJava also includes the feature of method

overloading without suffering the problem faced by Jam.

• We have studied an implementation strategy of McJava compiler. This
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mechanism ensures that McJava programs are runnable on any standard

Java virtual machines and McJava does not degrade run-time perfor-

mance of Java. With this compilation, it is also guaranteed that the

existing Java libraries can be used in McJava without any changes to the

libraries.

• We have proposed a new method lookup scheme of selective method com-

bination. This approach solves the problem of accidental overriding in

mixin-based composition. With the flexible subtyping mechanism defined

in McJava, in the case of having multiple candidates for method call to

super, we can appropriately select a method to be called. This approach

promotes flexibility of mixin-based compositions, and reliability of pro-

grams, because our approach makes it easier to preserve the behavior of

classes. We have implemented the mechanism into the McJava compiler.

• We have designed an extension of McJava with generics and ThisType.

We have discovered the language is not type-sound, but we can recover

type soundness by imposing restrictions on covariant subtyping among

inner mixins. We have also shown the expressive power of the language

that allows the design of generic mixin layers.

In short, this dissertation provides a convincing way for adding mixins into

Java. We may also say that the similar approach may be applied to nomi-

nally typed object-oriented languages other than Java such as C#, because

our model does not include any “only Java-specific” features.

8.2 Future Work

Future work mainly consists of two directions: modeling of features left out

from the dissertation, and more practical implementation of McJava.

Modeling Other Aspects of Our Work. We have informally presented

the McJava compilation strategy. Using a formal method will enhance under-

standing of the correctness of this compilation. A possible way for doing this

is to formalize a target language of compilation (that will be a core of Java

that includes interfaces because McJava compilation strongly depends on the



8.2 Future Work 91

existence of interfaces in the target language), then to formalize translation

from Core McJava to the target language.

One significant aspect that Core McJava does not include is selective method

combination. To include it, we have to extend Core McJava dynamic semantics

with the ability of referring the static type of a receiver of method invocation

during the reduction process. After this extension, a more careful study on

compilation of selective method combination will be required to reduce the

complexity of the current implementation.

The presentation of the design of an extension of McJava with generics and

ThisType is also informal. We may also have to add these features to Core

McJava to formally discuss on the properties of the language.

More Practical Implementation. Current implementation of McJava com-

piler is experimental. That means the purpose of the implementation is only

to experiment that the implementation mechanism is correct. For more prac-

tical use, we should satisfy the usability requirements of the compiler such as

compilation into byte code, not into source code of Java, and separate compi-

lation support for mixins. Fortunately, there are some projects of developing

extensible Java compilers [45]. We may use such products as a basis for more

practical implementation of McJava compiler.
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